Binary codes of strongly regular graphs

被引:58
作者
Haemers, WH [1 ]
Peeters, R [1 ]
Van Rijckevorsel, JM [1 ]
机构
[1] Tilburg Univ, Dept Econometr, NL-5000 LE Tilburg, Netherlands
关键词
binary codes; strongly regular graphs; regular two-graphs;
D O I
10.1023/A:1026479210284
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For strongly regular graphs ith adjacency matrix A, we look at the binary codes generated by A and A + 1. We determine these codes for some families of graphs, e pay attention to the relation beteen the codes of switching equivalent graphs and, ith the exception of two parameter sets, we generate by computer the codes of all knon strongly regular graphs on fewer than 45 vertices.
引用
收藏
页码:187 / 209
页数:23
相关论文
共 22 条
[1]  
[Anonymous], HDB INCIDENCE GEOMET
[2]  
ARLAZAROV VL, 1975, COMPUTER AIDED CONST
[3]   Binary codes of odd-order nets [J].
Assmus, EF ;
Drisko, AA .
DESIGNS CODES AND CRYPTOGRAPHY, 1999, 17 (1-3) :15-36
[4]  
Assmus Jr. E.F., 1992, CAMBRIDGE TRACTS MAT, V103
[5]  
Brouwer A.E., 1992, Journal of Algebraic Combinatorics, V1, P329
[6]   SOME 2-RANKS [J].
BROUWER, AE ;
WILBRINK, HA ;
HAEMERS, WH .
DISCRETE MATHEMATICS, 1992, 106 :83-92
[7]  
Bussemaker F.C., 1979, 79WSK05 TU EINDH
[8]  
BUSSEMAKER FC, 1970, 70WSK02 TU EINDH
[9]  
Cameron P., 1991, Designs, graphs, codes and their links
[10]   RANKS OF INCIDENCE MATRICES OF STEINER TRIPLE SYSTEMS [J].
DOYEN, J ;
HUBAUT, X ;
VANDENSAVEL, M .
MATHEMATISCHE ZEITSCHRIFT, 1978, 163 (03) :251-259