Evolutionary algorithms for reinforcement learning

被引:144
|
作者
Moriarty, DE
Schultz, AC
Grefenstette, JJ
机构
[1] Univ So Calif, Inst Informat Sci, Marina Del Rey, CA 90292 USA
[2] USN, Ctr Appl Res Artificial Intelligence, Res Lab, Washington, DC 20375 USA
[3] George Mason Univ, Inst Biosci Bioinformat & Biotechnol, Manassas, VA 20110 USA
来源
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH | 1999年 / 11卷
关键词
D O I
10.1613/jair.613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications.
引用
收藏
页码:241 / 276
页数:36
相关论文
共 50 条
  • [1] Evolutionary Algorithms for Reinforcement Learning
    Moriarty, David E.
    Schultz, Alan C.
    Grefenstette, John J.
    Journal of Artificial Intelligence Research, 1999, 11 (00): : 241 - 276
  • [2] A survey on Evolutionary Reinforcement Learning algorithms
    Zhu, Qingling
    Wu, Xiaoqiang
    Lin, Qiuzhen
    Ma, Lijia
    Li, Jianqiang
    Ming, Zhong
    Chen, Jianyong
    NEUROCOMPUTING, 2023, 556
  • [3] Reinforcement learning for online control of evolutionary algorithms
    Eiben, A. E.
    Horvath, Mark
    Kowalczyk, Wojtek
    Schut, Martijn C.
    ENGINEERING SELF-ORGANISING SYSTEMS, 2007, 4335 : 151 - +
  • [4] Survey of Deep Reinforcement Learning Methods with Evolutionary Algorithms
    Lü S.
    Gong X.-Y.
    Zhang Z.-H.
    Han S.
    Zhang J.-W.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (07): : 1478 - 1499
  • [5] Evolutionary Algorithms and Reinforcement Learning in Experiments with Slot Cars
    Martinec, Dan
    Bundzel, Marek
    2013 INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC), 2013, : 159 - 162
  • [6] Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms
    Drugan, Madalina M.
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 44 : 228 - 246
  • [7] Tuning Reinforcement Learning Parameters for Cluster Selection to Enhance Evolutionary Algorithms
    Villavicencio, Nathan
    Groves, Michael N.
    ACS ENGINEERING AU, 2024, 4 (04): : 381 - 393
  • [8] Parameters tuning and optimization for Reinforcement Learning algorithms using Evolutionary Computing
    Fernandez, Franklin Cardenoso
    Caarls, Wouter
    PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTER SCIENCE (INCISCOS 2018), 2018, : 301 - 305
  • [9] AutoMH: Automatically Create Evolutionary Metaheuristic Algorithms Using Reinforcement Learning
    Almonacid, Boris
    ENTROPY, 2022, 24 (07)
  • [10] A novel artificial neural network trained using evolutionary algorithms for reinforcement learning
    Reddipogu, A
    Maxwell, G
    MacLeod, C
    Simpson, M
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1946 - 1950