On the periodic trajectories of Boolean control networks

被引:145
作者
Fornasini, Ettore [1 ]
Valcher, Maria Elena [1 ]
机构
[1] Univ Padua, Dip Ingn Informaz, I-35131 Padua, Italy
关键词
Boolean logic; Boolean control networks; Directed graphs; Feedback stabilization; Limit cycles; Stabilizability; STABILITY;
D O I
10.1016/j.automatica.2013.02.027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note we first characterize the periodic trajectories (or, equivalently, the limit cycles) of a Boolean network, and their global attractiveness. We then investigate under which conditions all the trajectories of a Boolean control network may be forced to converge to the same periodic trajectory. If every trajectory can be driven to such a periodic trajectory, this is possible by means of a feedback control law. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1506 / 1509
页数:4
相关论文
共 14 条
[1]  
Brualdi R.A., 1991, Encyclopedia of Mathematics and Its Applications, V39
[2]  
Cheng D., 2010, P 2010 8 IEEE INT C, P1747
[3]   Stability and stabilization of Boolean networks [J].
Cheng, Daizhan ;
Qi, Hongsheng ;
Li, Zhiqiang ;
Liu, Jiang B. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (02) :134-156
[4]   State-Space Analysis of Boolean Networks [J].
Cheng, Daizhan ;
Qi, Hongsheng .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (04) :584-594
[5]   Input-State Approach to Boolean Networks [J].
Cheng, Daizhan .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (03) :512-521
[6]  
Cheng DH, 2011, COMMUN CONTROL ENG, P1, DOI 10.1007/978-0-85729-097-7
[7]  
Fornasini E., 2013, IEEE T AUTO IN PRESS
[8]  
Green D. G., 2007, P IEEE S ART LIF ALI, P402
[9]   METABOLIC STABILITY AND EPIGENESIS IN RANDOMLY CONSTRUCTED GENETIC NETS [J].
KAUFFMAN, SA .
JOURNAL OF THEORETICAL BIOLOGY, 1969, 22 (03) :437-&
[10]   Controllability of Boolean control networks via the Perron-Frobenius theory [J].
Laschov, Dmitriy ;
Margaliot, Michael .
AUTOMATICA, 2012, 48 (06) :1218-1223