Open Learning Analytics: A Systematic Review of Benchmark Studies using Open University Learning Analytics Dataset (OULAD)

被引:4
作者
Alhakbani, Haya A. [1 ]
Alnassar, Fatema M. [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Riyadh, Saudi Arabia
[2] Goldsmiths Univ London, London, England
来源
PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022 | 2022年
关键词
Virtual Learning Environment (VLE); Open Learning Analytics (OLE); Open University Learning Analytics Dataset (OULAD); Students' Performance Evaluation;
D O I
10.1145/3529399.3529413
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Virtual learning has gained increased importance because of the recent pandemic situation. A mass shift to virtual means of education delivery has been observed over the past couple of years, forcing the community to develop efficient performance assessment tools. Open University Learning Analytics Dataset (OULAD) is one of the most comprehensive and benchmark datasets in the learning analytics domain. This paper presents the review of benchmark studies performed using OULAD to assess the performance of students in a Virtual Learning Environment (VLE). The presented review aims to highlight the status of technological advancements in this domain and potential future research directions.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 27 条
[1]  
Ahmad Muhammad Sammy, 2021, 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), P187, DOI 10.1109/MIUCC52538.2021.9447602
[2]   Predicting At-Risk Students Using Clickstream Data in the Virtual Learning Environment [J].
Aljohani, Naif Radi ;
Fayoumi, Ayman ;
Hassan, Saeed-Ul .
SUSTAINABILITY, 2019, 11 (24)
[3]  
Alnassar Fatema, 2021, 2021 2 INT C INT ENG, P1
[4]   The Application of Gaussian Mixture Models for the Identification of At-Risk Learners in Massive Open Online Courses [J].
Alshabandar, Raghad ;
Hussain, Abir ;
Keight, Robert ;
Laws, Andy ;
Baker, Thar .
2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, :523-530
[5]  
[Anonymous], 2018, Student Success Prediction and the TradeOff Between Big Data and Data Minimization Digitale Bibliothek Gesellschaft fr Informatik e.V.
[6]   Predicting at-risk university students in a virtual learning environment via a machine learning algorithm [J].
Chui, Kwok Tai ;
Fung, Dennis Chun Lok ;
Lytras, Miltiadis D. ;
Lam, Tin Miu .
COMPUTERS IN HUMAN BEHAVIOR, 2020, 107
[7]  
Darusman Abu Hassan, 2021, PSYCHOL ED J, V58, P5607
[8]  
Gavilanes-Sagnay Fredy, 2018, 2018 5th International Conference on Computational Science and Computational Intelligence (CSCI), P596, DOI 10.1109/CSCI46756.2018.00120
[9]   Online At-Risk Student Identification using RNN-GRU Joint Neural Networks [J].
He, Yanbai ;
Chen, Rui ;
Li, Xinya ;
Hao, Chuanyan ;
Liu, Sijiang ;
Zhang, Gangyao ;
Jiang, Bo .
INFORMATION, 2020, 11 (10) :1-11
[10]   Using Meta-Learning to predict student performance in virtual learning environments [J].
Hidalgo, Angel Casado ;
Ger, Pablo Moreno ;
Valentin, Luis De La Fuente .
APPLIED INTELLIGENCE, 2022, 52 (03) :3352-3365