Dual roles of heparanase in human carotid plaque calcification

被引:13
作者
Aldi, Silvia [1 ]
Eriksson, Linnea [1 ]
Kronqvist, Malin [1 ]
Lengquist, Mariette [1 ]
Lofling, Marie [1 ]
Folkersen, Lasse [2 ]
Matic, Ljubica P. [1 ]
Maegdefessel, Lars [3 ,4 ]
Grinnemo, Karl-Henrik [1 ]
Li, Jin-Ping [5 ]
Osterholm, C. [1 ]
Hedin, Ulf [1 ]
机构
[1] Karolinska Inst, Dept Mol Med & Surg, Bioclinicum J8 20, S-17164 Solna, Sweden
[2] Tech Univ Denmark, Ctr Biol Sequence Anal, Copenhagen, Denmark
[3] Karolinska Inst, Dept Med Solna, S-17176 Stockholm, Sweden
[4] Tech Univ Munich, Dept Vasc Surg, D-80333 Munich, Germany
[5] Uppsala Univ, Dept Med Biochem & Microbiol, Biomed Ctr, SciLifeLab Uppsala, Husargatan 3, S-75237 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Atherosclerosis; Calcification; Heparanase; Bone remodeling; Heparan sulfate proteoglycans; SMOOTH-MUSCLE-CELLS; MAMMALIAN HEPARANASE; POTENTIAL MECHANISM; BONE-FORMATION; SULFATE; EXPRESSION; HEPARIN; ATHEROSCLEROSIS; OSTEOGENESIS; CALCIUM;
D O I
10.1016/j.atherosclerosis.2018.12.027
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and aims: Calcification is a hallmark of advanced atherosclerosis and an active process akin to bone remodeling. Heparanase (HPSE) is an endo-beta-glucuronidase, which cleaves glycosaminoglycan chains of heparan sulfate proteoglycans. The role of HPSE is controversial in osteogenesis and bone remodeling while it is unexplored in vascular calcification. Previously, we reported upregulation of HPSE in human carotid endarterectomies from symptomatic patients and showed correlation of HPSE expression with markers of inflammation and increased thrombogenicity. The present aim is to investigate HPSE expression in relation to genes associated with osteogenesis and osteolysis and the effect of elevated HPSE expression on calcification and osteolysis in vitro. Methods: Transcriptomic and immunohistochemical analyses were performed using the Biobank of Karolinska Endarterectomies (BiKE). In vitro calcification and osteolysis were analysed in human carotid smooth muscle cells overexpressing HPSE and bone marrow-derived osteoclasts from HPSE-transgenic mice respectively. Results: HPSE expression correlated primarily with genes coupled to osteoclast differentiation and function in human carotid atheromas. HPSE was expressed in osteoclast-like cells in atherosclerotic lesions, and HPSE-transgenic bone marrow-derived osteoclasts displayed a higher osteolytic activity compared to wild-type cells. Contrarily, human carotid SMCs with an elevated HPSE expression demonstrated markedly increased mineralization upon osteogenic differentiation. Conclusions: We suggest that HPSE may have dual functions in vascular calcification, depending on the stage of the disease and presence of inflammatory cells. While HPSE plausibly enhances mineralization and osteogenic differentiation of vascular smooth muscle cells, it is associated with inflammation-induced osteoclast differentiation and activity in advanced atherosclerotic plaques.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 46 条
[41]   Mammalian heparanase: Gene cloning, expression and function in tumor progression and metastasis [J].
Vlodavsky, I ;
Friedmann, Y ;
Elkin, M ;
Aingorn, H ;
Atzmon, R ;
Ishai-Michaeli, R ;
Bitan, M ;
Pappo, O ;
Peretz, T ;
Michal, I ;
Spector, L ;
Pecker, I .
NATURE MEDICINE, 1999, 5 (07) :793-802
[42]  
Vlodavsky I, 2007, CURR PHARM DESIGN, V13, P2057
[43]   Involvement of heparanase in atherosclerosis and other vessel wall pathologies [J].
Vlodavsky, Israel ;
Blich, Miry ;
Li, Jin-Ping ;
Sanderson, Ralph D. ;
Ilan, Neta .
MATRIX BIOLOGY, 2013, 32 (05) :241-251
[44]   Significance of Heparanase in Cancer and Inflammation [J].
Vlodavsky, Israel ;
Beckhove, Phillip ;
Lerner, Immanuel ;
Pisano, Claudio ;
Meirovitz, Amichai ;
Ilan, Neta ;
Elkin, Michael .
CANCER MICROENVIRONMENT, 2012, 5 (02) :115-132
[45]   Heparanase Enhances Local and Systemic Osteolysis in Multiple Myeloma by Upregulating the Expression and Secretion of RANKL [J].
Yang, Yang ;
Ren, Yongsheng ;
Ramani, Vishnu C. ;
Nan, Li ;
Suva, Larry J. ;
Sanderson, Ralph D. .
CANCER RESEARCH, 2010, 70 (21) :8329-8338
[46]   Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior [J].
Zcharia, E ;
Metzger, S ;
Chajek-Shaul, T ;
Aingorn, H ;
Elkin, M ;
Friedmann, Y ;
Weinstein, T ;
Li, JP ;
Lindahl, U ;
Vlodavsky, I .
FASEB JOURNAL, 2004, 18 (02) :252-263