Systems-level analysis of mechanisms regulating yeast metabolic flux

被引:207
作者
Hackett, Sean R. [1 ]
Zanotelli, Vito R. T. [2 ]
Xu, Wenxin [1 ,3 ]
Goya, Jonathan [1 ]
Park, Junyoung O. [1 ]
Perlman, David H. [3 ]
Gibney, Patrick A. [1 ,4 ]
Botstein, David [1 ,4 ]
Storey, John D. [1 ,4 ,5 ]
Rabinowitz, Joshua D. [1 ,3 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] ETH, Inst Mol Syst Biol, Zurich, Switzerland
[3] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[5] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
关键词
CENTRAL CARBON METABOLISM; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; BIOMASS COMPOSITION; GLYCOLYTIC-ENZYMES; FEEDBACK-CONTROL; PYRUVATE-KINASE; GROWTH-RATE; QUANTITATION;
D O I
10.1126/science.aaf2786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cellular metabolic fluxes are determined by enzyme activities and metabolite abundances. Biochemical approaches reveal the impact of specific substrates or regulators on enzyme kinetics but do not capture the extent to which metabolite and enzyme concentrations vary across physiological states and, therefore, how cellular reactions are regulated. We measured enzyme and metabolite concentrations and metabolic fluxes across 25 steady-state yeast cultures. We then assessed the extent to which flux can be explained by a Michaelis-Menten relationship between enzyme, substrate, product, and potential regulator concentrations. This revealed three previously unrecognized instances of cross-pathway regulation, which we biochemically verified. One of these involved inhibition of pyruvate kinase by citrate, which accumulated and thereby curtailed glycolytic outflow in nitrogen-limited yeast. Overall, substrate concentrations were the strongest driver of the net rates of cellular metabolic reactions, with metabolite concentrations collectively having more than double the physiological impact of enzymes.
引用
收藏
页数:15
相关论文
共 88 条
[1]  
[Anonymous], 2015, GUR OPT REF MAN
[2]  
[Anonymous], 1998, Genetics and Analysis of Quantitative Traits (Sinauer)
[3]  
Aung Hnin W, 2013, Ind Biotechnol (New Rochelle N Y), V9, P215
[4]   Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach [J].
Bennett, Bryson D. ;
Yuan, Jie ;
Kimball, Elizabeth H. ;
Rabinowitz, Joshua D. .
NATURE PROTOCOLS, 2008, 3 (08) :1299-1311
[5]  
BERG J., 2012, Biochemistry
[6]   Growth-limiting Intracellular Metabolites in Yeast Growing under Diverse Nutrient Limitations [J].
Boer, Viktor M. ;
Crutchfield, Christopher A. ;
Bradley, Patrick H. ;
Botstein, David ;
Rabinowitz, Joshua D. .
MOLECULAR BIOLOGY OF THE CELL, 2010, 21 (01) :198-211
[7]   Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast [J].
Brauer, Matthew J. ;
Huttenhower, Curtis ;
Airoldi, Edoardo M. ;
Rosenstein, Rachel ;
Matese, John C. ;
Gresham, David ;
Boer, Viktor M. ;
Troyanskaya, Olga G. ;
Botstein, David .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (01) :352-367
[8]   General methods for monitoring convergence of iterative simulations [J].
Brooks, SP ;
Gelman, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (04) :434-455
[9]   ChemmineR: a compound mining framework for R [J].
Cao, Yiqun ;
Charisi, Anna ;
Cheng, Li-Chang ;
Jiang, Tao ;
Girke, Thomas .
BIOINFORMATICS, 2008, 24 (15) :1733-1734
[10]   The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases [J].
Caspi, Ron ;
Altman, Tomer ;
Billington, Richard ;
Dreher, Kate ;
Foerster, Hartmut ;
Fulcher, Carol A. ;
Holland, Timothy A. ;
Keseler, Ingrid M. ;
Kothari, Anamika ;
Kubo, Aya ;
Krummenacker, Markus ;
Latendresse, Mario ;
Mueller, Lukas A. ;
Ong, Quang ;
Paley, Suzanne ;
Subhraveti, Pallavi ;
Weaver, Daniel S. ;
Weerasinghe, Deepika ;
Zhang, Peifen ;
Karp, Peter D. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D459-D471