Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound

被引:4
作者
De Beule, J. [1 ]
Metsch, K. [1 ,2 ]
Storme, L.
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, B-9000 Ghent, Belgium
[2] Univ Giessen, Math Inst, D-35392 Giessen, Germany
关键词
minihypers; Griesmer bound; blocking sets;
D O I
10.1007/s10623-008-9191-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present characterization results on non-weighted minihypers. For minihypers in PG(k-1,q), q not a square, we improve greatly the results of Hamada, Helleseth, and Maekawa, and of Ferret and Storme. The largest improvements are obtained for q prime.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 20 条
[11]   Minihypers and linear codes meeting the Griesmer bound: Improvements to results of Hamada, Helleseth and Maekawa [J].
Ferret, S ;
Storme, L .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) :143-162
[12]  
FERRET S, ADV INCIDEN IN PRESS
[13]   On a particular class of minihypers and its applications II.: Improvements for q square [J].
Govaerts, P ;
Storme, L .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (02) :369-393
[14]   A BOUND FOR ERROR-CORRECTING CODES [J].
GRIESMER, JH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :532-542
[15]   GEOMETRICAL METHOD OF CONSTRUCTION OF MAXIMAL T-LINEARLY INDEPENDENT SETS [J].
HAMADA, N ;
TAMARI, F .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (01) :14-28
[16]   A CHARACTERIZATION OF SOME [N, K, D Q]-CODES MEETING THE GRIESMER BOUND USING A MINIHYPER IN A FINITE PROJECTIVE GEOMETRY [J].
HAMADA, N .
DISCRETE MATHEMATICS, 1993, 116 (1-3) :229-268
[17]  
HAMADA N, 1987, SURIKAISEKIKENKYUSHO, V607, P52
[18]  
Hirschfeld J., 1998, OXFORD MATH MONOGRAP
[19]  
PLESS VS, 1998, HDB CODING THEORY, V1, P3
[20]   ALGEBRAICALLY PUNCTURED CYCLIC CODES [J].
SOLOMON, G ;
STIFFLER, JJ .
INFORMATION AND CONTROL, 1965, 8 (02) :170-&