THREE-SCALE FINITE ELEMENT EIGENVALUE DISCRETIZATIONS

被引:18
作者
Gao, X. [1 ]
Liu, F. [2 ]
Zhou, A. [1 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Computat Math & Sci & Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Cent Univ Finance & Econ, Sch Appl Math, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
discretization; eigenvalue; finite element; three-scale;
D O I
10.1007/s10543-008-0189-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Some three-scale finite element discretization schemes are proposed and analyzed in this paper for a class of elliptic eigenvalue problems on tensor product domains. With these schemes, the solution of an eigenvalue problem on a fine grid may be reduced to the solutions of eigenvalue problems on a relatively coarse grid and some partially mesoscopic grids, together with the solutions of linear algebraic systems on a globally mesoscopic grid and several partially fine grids. It is shown theoretically and numerically that this type of discretization schemes not only significantly reduce the number of degrees of freedom but also produce very accurate approximations.
引用
收藏
页码:533 / 562
页数:30
相关论文
共 50 条
[21]   CONVERGENT FINITE ELEMENT DISCRETIZATIONS OF THE NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS SYSTEM [J].
Prohl, Andreas .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (06) :1065-1087
[22]   Immersed finite element method for eigenvalue problem [J].
Lee, Seungwoo ;
Kwak, Do Y. ;
Sim, Imbo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 :410-426
[23]   The Andra Couplex 1 Test Case: Comparisons Between Finite-Element, Mixed Hybrid Finite Element and Finite Volume Element Discretizations [J].
G. Bernard-Michel ;
C. Le Potier ;
A. Beccantini ;
S. Gounand ;
M. Chraibi .
Computational Geosciences, 2004, 8 :187-201
[24]   Eigenvalue and eigenfunction error estimates for finite element formulations of linear hydroelasticity [J].
Ryan, P .
MATHEMATICS OF COMPUTATION, 2001, 70 (234) :471-487
[25]   The Andra Couplex 1 test case: Comparisons between finite-element, mixed hybrid finite element and finite volume element discretizations [J].
Bernard-Michel, G ;
Le Potier, C ;
Beccantini, A ;
Gounand, S ;
Chraibi, M .
COMPUTATIONAL GEOSCIENCES, 2004, 8 (02) :187-201
[26]   Immersed Finite Element Method for Eigenvalue Problems in Elasticity [J].
Lee, Seungwoo ;
Kwak, Do Young ;
Sim, Imbo .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (02) :424-444
[27]   GENERALIZED FINITE ELEMENT METHODS FOR QUADRATIC EIGENVALUE PROBLEMS [J].
Malqvist, Axel ;
Peterseim, Daniel .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (01) :147-163
[28]   A new finite element approach for the Dirichlet eigenvalue problem [J].
Xiao, Wenqiang ;
Gong, Bo ;
Sun, Jiguang ;
Zhang, Zhimin .
APPLIED MATHEMATICS LETTERS, 2020, 105
[29]   Quadrature finite element method for elliptic eigenvalue problems [J].
Solov’ev S.I. .
Lobachevskii Journal of Mathematics, 2017, 38 (5) :856-863
[30]   THE NONCONFORMING CROUZEIX-RAVIART ELEMENT APPROXIMATION AND TWO-GRID DISCRETIZATIONS FOR THE ELASTIC EIGENVALUE PROBLEM* [J].
Bi, Hai ;
Zhang, Xuqing ;
Yang, Yidu .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06) :1041-1063