THREE-SCALE FINITE ELEMENT EIGENVALUE DISCRETIZATIONS

被引:17
作者
Gao, X. [1 ]
Liu, F. [2 ]
Zhou, A. [1 ]
机构
[1] Chinese Acad Sci, LSEC, Inst Computat Math & Sci & Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Cent Univ Finance & Econ, Sch Appl Math, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
discretization; eigenvalue; finite element; three-scale;
D O I
10.1007/s10543-008-0189-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Some three-scale finite element discretization schemes are proposed and analyzed in this paper for a class of elliptic eigenvalue problems on tensor product domains. With these schemes, the solution of an eigenvalue problem on a fine grid may be reduced to the solutions of eigenvalue problems on a relatively coarse grid and some partially mesoscopic grids, together with the solutions of linear algebraic systems on a globally mesoscopic grid and several partially fine grids. It is shown theoretically and numerically that this type of discretization schemes not only significantly reduce the number of degrees of freedom but also produce very accurate approximations.
引用
收藏
页码:533 / 562
页数:30
相关论文
共 36 条
[1]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[2]  
Babuska I., 1991, Finite Element Methods, V2, P641
[3]  
Bank R. E., 1996, Acta Numerica, V5, P1, DOI 10.1017/S0962492900002610
[4]   MULTIGRID METHODS FOR DIFFERENTIAL EIGENPROBLEMS [J].
BRANDT, A ;
MCCORMICK, S ;
RUGE, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (02) :244-260
[5]   EXTRAPOLATION, COMBINATION, AND SPARSE GRID TECHNIQUES FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BUNGARTZ, H ;
GRIEBEL, M ;
RUDE, U .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :243-252
[6]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[7]   Multigrid methods for nearly singular linear equations and eigenvalue problems [J].
Cai, ZQ ;
Mandel, J ;
McCormick, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :178-200
[8]   Subspace correction multi-level methods for elliptic eigenvalue problems [J].
Chan, TF ;
Sharapov, I .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2002, 9 (01) :1-20
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]   ADAPTIVE MULTIGRID TECHNIQUES FOR LARGE-SCALE EIGENVALUE PROBLEMS - SOLUTIONS OF THE SCHRODINGER-PROBLEM IN 2 AND 3 DIMENSIONS [J].
COSTINER, S ;
TAASAN, S .
PHYSICAL REVIEW E, 1995, 51 (04) :3704-3717