Small molecule regulated sgRNAs enable control of genome editing in E. coli by Cas9

被引:27
作者
Iwasaki, Roman S. [1 ]
Ozdilek, Bagdeser A. [1 ,3 ]
Garst, Andrew D. [2 ,4 ]
Choudhury, Alaksh [2 ,5 ]
Batey, Robert T. [1 ]
机构
[1] Univ Colorado, Dept Biochem, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[3] Univ Georgia, Dept Genet, Athens, GA 30602 USA
[4] Inscripta Inc, Boulder, CO USA
[5] Univ Paris, Fac Med, INSERM, IAME,U1137, Site Xavier Bichat,16 Rue Henri Huchard, F-75018 Paris, France
基金
美国国家卫生研究院;
关键词
RNA APTAMERS; GUIDE RNA; CRISPR-CAS9; RIBOSWITCHES; COMPLEX; SYSTEM;
D O I
10.1038/s41467-020-15226-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas9 has led to great advances in gene editing for a broad spectrum of applications. To further the utility of Cas9 there have been efforts to achieve temporal control over its nuclease activity. While different approaches have focused on regulation of CRISPR interference or editing in mammalian cells, none of the reported methods enable control of the nuclease activity in bacteria. Here, we develop RNA linkers to combine theophylline- and 3-methylxanthine (3MX)-binding aptamers with the sgRNA, enabling small molecule-dependent editing in Escherichia coli. These activatable guide RNAs enable temporal and post-transcriptional control of in vivo gene editing. Further, they reduce the death of host cells caused by cuts in the genome, a major limitation of CRISPR-mediated bacterial recombineering.
引用
收藏
页数:9
相关论文
共 40 条
[21]   Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery [J].
Lin, Steven ;
Staahl, Brett ;
Alla, Ravi K. ;
Doudna, Jennifer A. .
ELIFE, 2014, 3 :e04766
[22]   A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing [J].
Liu, Kaiwen Ivy ;
Ramli, Muhammad Nadzim Bin ;
Woo, Cheok Wei Ariel ;
Wang, Yuanming ;
Zhao, Tianyun ;
Zhang, Xiujun ;
Yim, Guo Rong Daniel ;
Chong, Bao Yi ;
Gowher, Ali ;
Chua, Mervyn Zi Hao ;
Jung, Jonathan ;
Lee, Jia Hui Jane ;
Tan, Meng How .
NATURE CHEMICAL BIOLOGY, 2016, 12 (11) :980-+
[23]  
Liu YC, 2016, NAT METHODS, V13, P938, DOI [10.1038/NMETH.3994, 10.1038/nmeth.3994]
[24]   Multidimensional chemical control of CRISPR-Cas9 [J].
Maji, Basudeb ;
Moore, Christopher L. ;
Zetsche, Bernd ;
Volz, Sara E. ;
Zhang, Feng ;
Shoulders, Matthew D. ;
Choudhary, Amit .
NATURE CHEMICAL BIOLOGY, 2017, 13 (01) :9-11
[25]   Photoactivatable CRISPR-Cas9 for optogenetic genome editing [J].
Nihongaki, Yuta ;
Kawano, Fuun ;
Nakajima, Takahiro ;
Sato, Moritoshi .
NATURE BIOTECHNOLOGY, 2015, 33 (07) :755-760
[26]   Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA [J].
Nishimasu, Hiroshi ;
Ran, F. Ann ;
Hsu, Patrick D. ;
Konermann, Silvana ;
Shehata, Soraya I. ;
Dohmae, Naoshi ;
Ishitani, Ryuichiro ;
Zhang, Feng ;
Nureki, Osamu .
CELL, 2014, 156 (05) :935-949
[27]   Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch [J].
Oakes, Benjamin L. ;
Nadler, Dana C. ;
Flamholz, Avi ;
Fellmann, Christof ;
Staahl, Brett T. ;
Doudna, Jennifer A. ;
Savage, David F. .
NATURE BIOTECHNOLOGY, 2016, 34 (06) :646-651
[28]   Genomic Deoxyxylulose Phosphate Reductoisomerase (DXR) Mutations Conferring Resistance to the Antimalarial Drug Fosmidomycin in E. coli [J].
Pines, Gur ;
Oh, Eun Joong ;
Bassalo, Marcelo C. ;
Choudhury, Alaksh ;
Garst, Andrew D. ;
Fankhauser, Reilly G. ;
Eckert, Carrie A. ;
Gill, Ryan T. .
ACS SYNTHETIC BIOLOGY, 2018, 7 (12) :2824-2832
[29]   Coupling the CRISPR/Cas9 System with Lambda Red Recombineering Enables Simplified Chromosomal Gene Replacement in Escherichia coli [J].
Pyne, Michael E. ;
Moo-Young, Murray ;
Chung, Duane A. ;
Chou, C. Perry .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (15) :5103-5114
[30]   Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries [J].
Quan, Jiayuan ;
Tian, Jingdong .
NATURE PROTOCOLS, 2011, 6 (02) :242-251