Algebro-Geometric Integration of the Modified BelovChaltikian Lattice Hierarchy

被引:5
作者
Geng, Xianguo [1 ]
Wei, Jiao [1 ]
Zeng, Xin [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
modified Belov-Chaltikian lattice hierarchy; trigonal curve; quasiperiodic solution; QUASI-PERIODIC SOLUTIONS; EQUATION; DECOMPOSITION;
D O I
10.1134/S0040577919050052
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified BelovChaltikian lattice hierarchy associated with a discrete 3x3 matrix spectral problem. Using the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a tri gonal curve Km-2 of arithmetic genus m-2. We study the asymptotic properties of the BakerAkhiezer function and the algebraic function carrying the data of the divisor near P1, P2, P3, and P-0 on Km-2. Based on the theory of trigonal curves, we obtain the explicit theta-function representations of the algebraic function, the BakerAkhiezer function, and, in particular, solutions of the entire modified BelovChaltikian lattice hierarchy.
引用
收藏
页码:675 / 694
页数:20
相关论文
共 40 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]   ON THE QUASI-PERIODIC SOLUTIONS TO THE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
AHMAD, S ;
CHOWDHURY, AR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (02) :293-303
[3]   THE QUASI-PERIODIC SOLUTIONS TO THE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
AHMAD, S ;
CHOWDHURY, AR .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (01) :134-137
[4]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[5]   ON FINITE-ZONE SOLUTIONS OF RELATIVISTIC TODA-LATTICES [J].
ALBER, SJ .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (02) :149-155
[6]  
[Anonymous], 1977, Funct. Anal. Appl
[7]   Abelian functions for cyclic trigonal curves of genus 4 [J].
Baldwin, S. ;
Eilbeck, J. C. ;
Gibbons, J. ;
Onishi, Y. .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (04) :450-467
[8]  
Belokolos ED, 1994, Algebro-geometric approach to nonlinear integrable equations
[9]   Finite-band potentials with trigonal curves [J].
Brezhnev, YV .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (03) :1657-1662
[10]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970