Ultrahigh Electrical Conductivity of Graphene Embedded in Metals

被引:231
作者
Cao, Mu [1 ]
Xiong, Ding-Bang [1 ]
Yang, Li [2 ]
Li, Shuaishuai [3 ]
Xie, Yiqun [3 ]
Guo, Qiang [1 ]
Li, Zhiqiong [1 ]
Adams, Horst [4 ]
Gu, Jiajun [1 ]
Fan, Tongxiang [1 ]
Zhang, Xiaohui [5 ]
Zhang, Di [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Washington Univ, Dept Phys, One Brookings Dr, St Louis, MO 63130 USA
[3] Shanghai Normal Univ, Dept Phys, 100 Guilin Rd, Shanghai 200234, Peoples R China
[4] Adamco Inc, 2223 Watts St, Houston, TX 77030 USA
[5] CRRC Ind Inst Co Ltd, Beijing 100067, Peoples R China
关键词
electrical conductivity; graphene; interface; metal matrix composites; ENHANCED MECHANICAL-PROPERTIES; HIGH-QUALITY; BALLISTIC TRANSPORT; COPPER; RESISTIVITY; FILMS; RESISTANCE; PERFORMANCE; MOBILITY; ENERGY;
D O I
10.1002/adfm.201806792
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly efficient conductors are strongly desired because they can lead to higher working performance and less energy consumption in their wide range applications. However, the improvements on the electrical conductivities of conventional conductors are limited, such as purification and growing single crystal of metals. Here, by embedding graphene in metals (Cu, Al, and Ag), the trade-off between carrier mobility and carrier density is surmount in graphene, and realize high electron mobility and high electron density simultaneously through elaborate interface design and morphology control. As a result, a maximum electrical conductivity three orders of magnitude higher than the highest on record (more than 3,000 times higher than that of Cu) is obtained in such embedded graphene. As a result, using the graphene as reinforcement, an electrical conductivity as high as =117% of the International Annealed Copper Standard and significantly higher than that of Ag is achieved in bulk graphene/Cu composites with an extremely low graphene volume fraction of only 0.008%. The results are of significance when enhancing efficiency and saving energy in electrical and electronic applications of metals, and also of interest for fundamental researches on electron behaviors in graphene.
引用
收藏
页数:8
相关论文
共 66 条
[1]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[2]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[3]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[8]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[9]   Surface and grain boundary contributions in the electrical resistivity of metallic nanofilms [J].
Camacho, Juan M. ;
Oliva, A. I. .
THIN SOLID FILMS, 2006, 515 (04) :1881-1885
[10]   Aligning graphene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity [J].
Cao, Mu ;
Xiong, Ding-Bang ;
Tan, Zhanqiu ;
Ji, Gang ;
Amin-Ahmadi, Behnam ;
Guo, Qiang ;
Fan, Genlian ;
Guo, Cuiping ;
Li, Zhiqiang ;
Zhang, Di .
CARBON, 2017, 117 :65-74