BSSN equations in spherical coordinates without regularization: spherically symmetric spacetimes

被引:1
作者
Montero, Pedro J. [1 ]
Cordero-Carrion, Isabel [1 ]
机构
[1] Max Planck Inst Astrophys, D-85748 Garching, Germany
来源
24TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (IUPAP-CCP 2012) | 2013年 / 454卷
关键词
EVOLUTION CODES;
D O I
10.1088/1742-6596/454/1/012002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Brown recently introduced a covariant formulation of the BSSN equations which is well suited for curvilinear coordinate systems. This is particularly desirable as many astrophysical phenomena are symmetric with respect to the rotation axis or are such that curvilinear coordinates adapt better to their geometry. We show results from a newly developed numerical code solving the BSSN equations in spherical symmetry and the general relativistic hydrodynamic equations written in flux-conservative form. A key feature of the code is that uses a second-order partially implicit Runge-Kutta method to integrate the evolution equations, and does not need a regularization algorithm at the origin. We discuss a number of tests to assess the accuracy, numerical stability and expected convergence of the code.
引用
收藏
页数:10
相关论文
共 24 条
  • [1] Regularization of spherically symmetric evolution codes in numerical relativity
    Alcubierre, M
    González, JA
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2005, 167 (02) : 76 - 84
  • [2] Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023
    Alcubierre, M
    Brügmann, B
    Diener, P
    Koppitz, M
    Pollney, D
    Seidel, E
    Takahashi, R
    [J]. PHYSICAL REVIEW D, 2003, 67 (08)
  • [3] Formulations of the 3+1 evolution equations in curvilinear coordinates
    Alcubierre, Miguel
    Mendez, Martha D.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (10) : 2769 - 2806
  • [4] [Anonymous], 1973, GARP PUBL SER
  • [5] Numerical {3+1} general relativistic hydrodynamics: A local characteristic approach
    Banyuls, F
    Font, JA
    Ibanez, JM
    Marti, JM
    Miralles, JA
    [J]. ASTROPHYSICAL JOURNAL, 1997, 476 (01) : 221 - 231
  • [6] Numerical relativity in spherical polar coordinates: Evolution calculations with the BSSN formulation
    Baumgarte, Thomas W.
    Montero, Pedro J.
    Cordero-Carrion, Isabel
    Mueller, Ewald
    [J]. PHYSICAL REVIEW D, 2013, 87 (04):
  • [7] Numerical integration of Einstein's field equations
    Baumgarte, TW
    Shapiro, SL
    [J]. PHYSICAL REVIEW D, 1999, 59 (02):
  • [8] First order hyperbolic formalism for numerical relativity
    Bona, C
    Masso, J
    Seidel, E
    Stela, J
    [J]. PHYSICAL REVIEW D, 1997, 56 (06): : 3405 - 3415
  • [9] Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates -: art. no. 104007
    Bonazzola, S
    Gourgoulhon, E
    Grandclément, P
    Novak, J
    [J]. PHYSICAL REVIEW D, 2004, 70 (10): : 24
  • [10] Covariant formulations of Baumgarte, Shapiro, Shibata, and Nakamura and the standard gauge
    Brown, J. David
    [J]. PHYSICAL REVIEW D, 2009, 79 (10):