Multiple Transport-Active Binding Sites Are Available for a Single Substrate on Human P-Glycoprotein (ABCB1)

被引:93
作者
Chufan, Eduardo E. [1 ]
Kapoor, Khyati [1 ]
Sim, Hong-May [1 ]
Singh, Satyakam [2 ]
Talele, Tanaji T. [2 ]
Durell, Stewart R. [1 ]
Ambudkar, Suresh V. [1 ]
机构
[1] NCI, Cell Biol Lab, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[2] St Johns Univ, Dept Pharmaceut Sci, Coll Pharm & Hlth Sci, Queens, NY USA
基金
美国国家卫生研究院;
关键词
DRUG-BINDING; MULTIDRUG-RESISTANCE; CATALYTIC CYCLE; ATP HYDROLYSIS; FUNCTIONAL-CHARACTERIZATION; EXPRESSION SYSTEM; MAMMALIAN-CELLS; MOLECULAR-BASIS; RESIDUES; REVEALS;
D O I
10.1371/journal.pone.0082463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell-and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [I-125]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate.
引用
收藏
页数:16
相关论文
共 57 条
[1]  
Al-Shawi MK, 2011, ESSAYS BIOCHEM, V50, P63, DOI [10.1042/BSE0500063, 10.1042/bse0500063]
[2]   Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding [J].
Aller, Stephen G. ;
Yu, Jodie ;
Ward, Andrew ;
Weng, Yue ;
Chittaboina, Srinivas ;
Zhuo, Rupeng ;
Harrell, Patina M. ;
Trinh, Yenphuong T. ;
Zhang, Qinghai ;
Urbatsch, Ina L. ;
Chang, Geoffrey .
SCIENCE, 2009, 323 (5922) :1718-1722
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   The power of the pump: Mechanisms of action of P-glycoprotein (ABCB1) [J].
Ambudkar, SV ;
Kim, IW ;
Sauna, ZE .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2006, 27 (05) :392-400
[5]   Biochemical, cellular, and pharmacological aspects of the multidrug transporter [J].
Ambudkar, SV ;
Dey, S ;
Hrycyna, CA ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1999, 39 :361-398
[6]  
Ambudkar SV, 1998, METHOD ENZYMOL, V292, P504
[7]   Exploring the P-Glycoprotein Binding Cavity with Polyoxyethylene Alkyl Ethers [J].
Blatter, Xiaochun Li ;
Seelig, Anna .
BIOPHYSICAL JOURNAL, 2010, 99 (11) :3589-3598
[8]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[9]   A Measure of the Broad Substrate Specificity of Enzymes Based on 'Duplicate' Catalytic Residues [J].
Chakraborty, Sandeep ;
Asgeirsson, Bjarni ;
Rao, Basuthkar J. .
PLOS ONE, 2012, 7 (11)
[10]   Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein [J].
Dey, S ;
Ramachandra, M ;
Pastan, I ;
Gottesman, MM ;
Ambudkar, SV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10594-10599