Some Results on Conformal Geometry of Gradient Ricci Solitons

被引:4
作者
Silva Filho, J. F. [1 ]
机构
[1] Univ Integracao Int Lusofonia Afrobrasileira, Inst Ciencias Exatas & Nat, Campus Auroras,Rua Jose Franco de Oliveira, BR-62790970 Redencao, Ceara, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2020年 / 51卷 / 04期
关键词
Gradient Ricci solitons; Conformal change of metric; Conformal vector fields; LAGRANGIAN SUBMANIFOLDS; VECTOR-FIELDS; RIGIDITY;
D O I
10.1007/s00574-019-00182-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this article is to study the conformal geometry of gradient Ricci solitons as well as the relationship between such Riemannian manifolds and closed conformal vector fields. We prove that gradient Ricci solitons endowed with a non-parallel closed conformal vector field can be conformally changed to constant scalar curvature almost everywhere. Moreover, we obtain a characterization for this class of manifolds under assumption that the closed conformal vector field is gradient type.
引用
收藏
页码:937 / 955
页数:19
相关论文
共 43 条
[1]  
Amur K., 1974, J. Differ. Geom., V9, P571
[2]  
[Anonymous], 2011, Adv. Lect. Math. (ALM)
[3]  
[Anonymous], 1970, J. Differ. Geom
[4]   Some Applications of the Hodge-de Rham Decomposition to Ricci Solitons [J].
Aquino, C. ;
Barros, A. ;
Ribeiro, E., Jr. .
RESULTS IN MATHEMATICS, 2011, 60 (1-4) :245-254
[5]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[6]   Three-dimensional Ricci solitons which project to surfaces [J].
Baird, Paul ;
Danielo, Laurent .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :65-91
[7]  
Besse A. L., 2008, CLASSICS MATH
[8]  
Bryant R, 2005, RICCI FLOW SOLUTIONS
[9]   The geometry of closed conformal vector fields on Riemannian spaces [J].
Caminha, A. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02) :277-300
[10]  
Cao H-D., 2009, Adv. Lect. Math., P1