Data-Based Optimal Control for Weakly Coupled Nonlinear Systems Using Policy Iteration

被引:25
作者
Li, Chao [1 ]
Liu, Derong [2 ]
Wang, Ding [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[3] Tianjin Univ, Sch Elect Engn & Automat, Tianjin Key Lab Proc Measurement & Control, Tianjin 300072, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2018年 / 48卷 / 04期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Adaptive dynamic programming (ADP); neural networks (NNs); optimal control; policy iteration (PI); unknown dynamics; weakly coupled systems; ADAPTIVE OPTIMAL-CONTROL; ROBUST OPTIMAL-CONTROL; INTERCONNECTED SYSTEMS; DECENTRALIZED CONTROL; DESIGN; ALGORITHM; GAMES;
D O I
10.1109/TSMC.2016.2606479
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a data-based online learning algorithm is established to solve the optimal control problem for weakly coupled continuous-time nonlinear systems with completely unknown dynamics. Using the weak coupling theory, we reformulate the original problem into three reduced-order optimal control problems. We establish an online model-free integral policy iteration algorithm to solve the decoupled optimal control problems without system dynamics. To implement the data-based online learning algorithm, the actor-critic technique based on neural networks and the least squares method are used. Two simulation examples are given to verify the effectiveness of the developed algorithm.
引用
收藏
页码:511 / 521
页数:11
相关论文
共 47 条
[1]   OPTIMAL-CONTROL OF WEAKLY COUPLED BILINEAR-SYSTEMS [J].
AGANOVIC, Z ;
GAJIC, Z .
AUTOMATICA, 1993, 29 (06) :1591-1593
[2]  
Aganovic Z., 1995, LINEAR OPTIMAL CONTR
[3]  
[Anonymous], 1998, REINFORCEMENT LEARNI
[4]   Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation [J].
Beard, RW ;
Saridis, GN ;
Wen, JT .
AUTOMATICA, 1997, 33 (12) :2159-2177
[5]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[6]   Decentralized Adaptive Optimal Control of Large-Scale Systems With Application to Power Systems [J].
Bian, Tao ;
Jiang, Yu ;
Jiang, Zhong-Ping .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (04) :2439-2447
[7]  
BRADTKE SJ, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P3475
[8]  
Busoniu L, 2010, AUTOM CONTROL ENG SE, P1, DOI 10.1201/9781439821091-f
[9]   Approximate optimal adaptive control for weakly coupled nonlinear systems: A neuro-inspired approach [J].
Carrillo, Luis Rodolfo Garcia ;
Vamvoudakis, Kyriakos G. ;
Hespanha, Joao Pedro .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2016, 30 (8-10) :1494-1522
[10]  
Ernst D, 2005, J MACH LEARN RES, V6, P503