Kernel-based convolution expansion for facial expression recognition

被引:3
作者
Mahmoudi, M. Amine [1 ]
Chetouani, Aladine [2 ]
Boufera, Fatma [1 ]
Tabia, Hedi [3 ]
机构
[1] Mustapha Stambouli Univ Mascara, Mascara, Algeria
[2] Univ Orleans, PRISME Lab, Orleans, France
[3] Univ Paris Saclay, Univ Evry, IBISC, Evry, France
关键词
Emotion recognition; Facial expression recognition; Deep learning; Kernel methods;
D O I
10.1016/j.patrec.2022.06.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ever-growing depth and width of Convolutional Neural Networks (CNNs) drastically increases the number of their parameters and requires more powerful devices to train and deploy. In this paper, we propose a new architecture that outperforms the classical linear convolution function by expanding the latter to a higher degree kernel function without additional weights. We opt for Taylor Series Kernel which maps input data to a higher-dimensional Reproducing Kernel Hilbert Space (RKHS). Mapping fea-tures to a higher-order RKHS is performed in both implicit and explicit ways. For the former way, we compute several polynomial kernels of different degrees leveraging the kernel trick. Whereas, the latter way is achieved by concatenating the result of these polynomial kernels. The proposed Taylor Series Ker-nelized Convolution (TSKC) is able to learn more complex patterns than the linear convolution kernel and thus be more discriminative. The experiments conducted on Facial Expression Recognition (FER) datasets demonstrate that TSKC outperforms the ordinary convolution layer without additional parameters.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:128 / 134
页数:7
相关论文
共 36 条
[1]   Covariance Pooling for Facial Expression Recognition [J].
Acharya, Dinesh ;
Huang, Zhiwu ;
Paudel, Danda Pani ;
Van Gool, Luc .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :480-487
[2]   Facial Expression Recognition with Active Local Shape Pattern and Learned-Size Block Representations [J].
Bin Iqbal, Md Tauhid ;
Ryu, Byungyong ;
Rivera, Adin Ramirez ;
Makhmudkhujaev, Farkhod ;
Chae, Oksam ;
Bae, Sung-Ho .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) :1322-1336
[3]   Facial Expression Recognition with Neighborhood-Aware Edge Directional Pattern (NEDP) [J].
Bin Iqbal, Md Tauhid ;
Abdullah-Al-Wadud, M. ;
Ryu, Byungyong ;
Makhmudkhujaev, Farkhod ;
Chae, Oksam .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2020, 11 (01) :125-137
[4]   SchiNet: Automatic Estimation of Symptoms of Schizophrenia from Facial Behaviour Analysis [J].
Bishay, Mina ;
Palasek, Petar ;
Priebe, Stefan ;
Patras, Ioannis .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (04) :949-961
[5]   STCAM: Spatial-Temporal and Channel Attention Module for Dynamic Facial Expression Recognition [J].
Chen, Weicong ;
Zhang, Dong ;
Li, Ming ;
Lee, Dah-Jye .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) :800-810
[6]   Dynamic Convolution: Attention over Convolution Kernels [J].
Chen, Yinpeng ;
Dai, Xiyang ;
Liu, Mengchen ;
Chen, Dongdong ;
Yuan, Lu ;
Liu, Zicheng .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11027-11036
[7]   Kernel Pooling for Convolutional Neural Networks [J].
Cui, Yin ;
Zhou, Feng ;
Wang, Jiang ;
Liu, Xiao ;
Lin, Yuanqing ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3049-3058
[8]   Facial Expression Recognition With Deeply-Supervised Attention Network [J].
Fan, Yingruo ;
Li, Victor O. K. ;
Lam, Jacqueline C. K. .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) :1057-1071
[9]   Compact Bilinear Pooling [J].
Gao, Yang ;
Beijbom, Oscar ;
Zhang, Ning ;
Darrell, Trevor .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :317-326
[10]   3Global Second-order Pooling Convolutional Networks [J].
Gao, Zilin ;
Xie, Jiangtao ;
Wang, Qilong ;
Li, Peihua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3019-3028