ON CURVES OVER FINITE FIELDS WITH JACOBIANS OF SMALL EXPONENT

被引:2
作者
Ford, Kevin [1 ]
Shparlinski, Igor [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
关键词
Jacobian; group structure; distribution of divisors;
D O I
10.1142/S1793042108001687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that finite fields over which there is a curve of a given genus g >= 1 with its Jacobian having a small exponent, are very rare. This extends a recent result of Duke in the case of g = 1. We also show that when g = 1 or g = 2, our lower bounds on the exponent, valid for almost all finite fields F-q and all curves over F-q, are best possible.
引用
收藏
页码:819 / 826
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 1995, ARITHMETIC ELLIPTIC
[2]  
Avanzi R., 2005, ELLIPTIC HYPERELLIPT
[3]   Almost all reductions modulo p of an elliptic curve have a large exponent [J].
Duke, W .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (11) :689-692
[4]  
Erdos P., 1999, P 5 CAN NUMB THEOR A, P87
[5]   The distribution of integers with a divisor in a given interval [J].
Ford, Kevin .
ANNALS OF MATHEMATICS, 2008, 168 (02) :367-433
[6]  
HAVENPORT H, 1980, MULTIPLICATIVE NUMBE
[7]   Large torsion subgroups of split Jacobians of curves of genus two or three [J].
Howe, EW ;
Leprévost, F ;
Poonen, B .
FORUM MATHEMATICUM, 2000, 12 (03) :315-364
[8]  
Indlekofer KH, 2002, PUBL MATH-DEBRECEN, V60, P307
[9]  
Luca F, 2005, INT MATH RES NOTICES, V2005, P1391
[10]  
LUCA F, 2006, J THEOR NOMBRES BORD, V18, P471