Decoding microRNAs in autism spectrum disorder

被引:20
作者
Li, Jinyu [1 ]
Xu, Xiaohui [1 ]
Liu, Jiane [2 ]
Zhang, Sudan [1 ]
Tan, Xiaohua [1 ]
Li, Zhiqiang [3 ,4 ]
Zhang, Jian [5 ]
Wang, Zheng [1 ,2 ]
机构
[1] Qingdao Univ, Basic Med Coll, Dept Genet & Cell Biol, Qingdao 266071, Shandong, Peoples R China
[2] Qingdao Univ, Dept Reprod Med, Affiliated Hosp, Qingdao 266000, Shandong, Peoples R China
[3] Qingdao Univ, Affiliated Hosp, Qingdao 266003, Shandong, Peoples R China
[4] Qingdao Univ, Biomed Sci Inst Qingdao Univ, Qingdao Branch, SJTU Biox Inst, Qingdao 266003, Shandong, Peoples R China
[5] Southern Med Univ, Sch Basic Med Sci, Dept Med Genet, Guangzhou 510515, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
MATERNAL IMMUNE ACTIVATION; DNA METHYLATION; RETT-SYNDROME; BRAIN; DYSREGULATION; EXPRESSION; MECP2; CELLS; BIOGENESIS; EXPOSURE;
D O I
10.1016/j.omtn.2022.11.005
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Autism spectrum disorder (ASD)-a congenital mental disor-der accompanied by social dysfunction and stereotyped behav-iors-has attracted a great deal of attention worldwide. A com-bination of genetic and environmental factors may determine the pathogenesis of ASD. Recent research of multiple ASD models indicates that microRNAs (miRNAs) play a central role at the onset and progression of ASD by repressing the translation of key mRNAs in neural development and func-tions. As such, miRNAs show great potential to serve as biomarkers for ASD diagnosis or prognosis and therapeutic targets for the treatment of ASD. In this review, we discuss the regulatory mechanisms by which miRNAs influence ASD phenotypes through various in vivo and in vitro models, including necropsy specimens, animal models, cellular models, and, in particular, induced pluripotent stem cells derived from patients with ASD. We then discuss the potential of miRNA-based therapeutic strategies for ASD currently being evaluated in preclinical studies.
引用
收藏
页码:535 / 546
页数:12
相关论文
共 50 条
[21]   Immune Endophenotypes in Children With Autism Spectrum Disorder [J].
Careaga, Milo ;
Rogers, Sally ;
Hansen, Robin L. ;
Amaral, David G. ;
Van de Water, Judy ;
Ashwood, Paul .
BIOLOGICAL PSYCHIATRY, 2017, 81 (05) :434-441
[22]   Microglia: Synaptic modulator in autism spectrum disorder [J].
Hu, Cong ;
Li, Heli ;
Li, Jinhui ;
Luo, Xiaoping ;
Hao, Yan .
FRONTIERS IN PSYCHIATRY, 2022, 13
[23]   Lipid-Based Molecules on Signaling Pathways in Autism Spectrum Disorder [J].
Yui, Kunio ;
Imataka, George ;
Yoshihara, Shigemi .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
[24]   Does the kynurenine pathway play a pathogenic role in autism spectrum disorder? [J].
Santana-Coelho, Danielle .
BRAIN BEHAVIOR & IMMUNITY-HEALTH, 2024, 40
[25]   JUN and PDGFRA as Crucial Candidate Genes for Childhood Autism Spectrum Disorder [J].
Li, Heli ;
Wang, Xinyuan ;
Hu, Cong ;
Li, Hao ;
Xu, Zhuoshuo ;
Lei, Ping ;
Luo, Xiaoping ;
Hao, Yan .
FRONTIERS IN NEUROINFORMATICS, 2022, 16
[26]   N170 decoding response to Duchenne smile face in autism spectrum disorder children [J].
Ferrer-Alvarez, R. ;
Hidalgo, M. ;
Perteguer, J. A. ;
Ortiz, T. .
CURRENT PSYCHOLOGY, 2025, 44 (12) :11433-11444
[27]   The NO Answer for Autism Spectrum Disorder [J].
Tripathi, Manish Kumar ;
Ojha, Shashank Kumar ;
Kartawy, Maryam ;
Hamoudi, Wajeha ;
Choudhary, Ashwani ;
Stern, Shani ;
Aran, Adi ;
Amal, Haitham .
ADVANCED SCIENCE, 2023, 10 (22)
[28]   The epidemiology of autism spectrum disorder [J].
Seretopoulos, K. ;
Lamnisos, D. ;
Giannakou, K. .
ARCHIVES OF HELLENIC MEDICINE, 2020, 37 (02) :169-180
[29]   Autism Spectrum Disorder and the Cerebellum [J].
Becker, Esther B. E. ;
Stoodley, Catherine J. .
NEUROBIOLOGY OF AUTISM, 2013, 113 :1-34
[30]   Astroglia in Autism Spectrum Disorder [J].
Gzielo, Kinga ;
Nikiforuk, Agnieszka .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)