FLEXIBLE VARIETIES AND AUTOMORPHISM GROUPS

被引:87
作者
Arzhantsev, I. [1 ]
Flenner, H. [2 ]
Kaliman, S. [3 ]
Kutzschebauch, F. [4 ]
Zaidenberg, M. [5 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Dept Algebra, Moscow 119991, Russia
[2] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[3] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[4] Univ Bern, Math Inst, CH-3012 Bern, Switzerland
[5] Univ Grenoble 1, Inst Fourier, CNRS, UMR 5582, F-38402 St Martin Dheres, France
基金
瑞士国家科学基金会;
关键词
DENSITY PROPERTY; COMPLEX-MANIFOLDS; AFFINE SURFACES; MAKAR-LIMANOV; INVARIANTS; OPERATIONS;
D O I
10.1215/00127094-2080132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an irreducible affine algebraic variety X of dimension n >= 2, we let SAut(X) denote the special automorphism group of X, that is, the subgroup of the full automorphism group Aut(X) generated by all one-parameter unipotent subgroups. We show that if SAut(X) is transitive on the smooth locus X-reg, then it is infinitely transitive on X-reg. In turn, the transitivity is equivalent to the flexibility of X. The latter means that for every smooth point x is an element of X-reg the tangent space TxX is spanned by the velocity vectors at x of one-parameter unipotent subgroups of Aut(X). We also provide various modifications and applications.
引用
收藏
页码:767 / 823
页数:57
相关论文
共 60 条
[1]  
[Anonymous], 1994, ALGEBRAIC GEOMETRY 4
[2]  
[Anonymous], 2002, KAC MOODY GROUPS THE, DOI DOI 10.1007/978-1-4612-0105-2
[3]  
[Anonymous], 2000, J. Geom. Anal
[4]  
[Anonymous], 1961, I HAUTES ETUDEST SCI
[5]   Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity [J].
Arzhantsev, I. V. ;
Zaidenberg, M. G. ;
Kuyumzhiyan, K. G. .
SBORNIK MATHEMATICS, 2012, 203 (07) :923-949
[6]   ON THE GEOMETRY OF SL(2)-EQUIVARIANT FLIPS [J].
Batyrev, Victor ;
Haddad, Fatima .
MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (04) :621-646
[7]   EXTENSIONS OF REPRESENTATIONS OF ALGEBRAIC LINEAR GROUPS [J].
BIALYNICKIBIRUL.A ;
HOCHSCHILD, G ;
MOSTOW, GD .
AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (01) :131-&
[8]  
BOGOMOLOV F., BIRATIONAL IN PRESS
[9]   LES BOUTS DES ESPACES HOMOGENES DE GROUPES DE LIE [J].
BOREL, A .
ANNALS OF MATHEMATICS, 1953, 58 (03) :443-457
[10]  
Danilov V., 1994, Encyclopaedia of Mathematical Sciences, V23, P167