RATIONAL HOMOTOPY OF MAPS BETWEEN CERTAIN COMPLEX GRASSMANN MANIFOLDS

被引:3
作者
Chakraborthy, Pratheep [1 ]
Masuti, Shreedevi K. [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 8th Mile Mysore Road, Bangalore 560059, Karnataka, India
[2] Inst Math Sci, 5 Cross Rd,CIT Campus, Madras 600113, Tamil Nadu, India
关键词
Grassmann manifold; homotopy class of maps; graded algebra homomorphism; cohomology algebra; SELF-MAPS; AUTOMORPHISMS; COHOMOLOGY;
D O I
10.1515/ms-2017-0092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(n, k) denote the complex Grassmann manifold of k-dimensional vector subspaces of C-n. Assume l,k <= [/2]. We show that, for sufficiently large n, any continuous map h : G(n,l) -> G(n,k) is rationally null homotopic if (i) 1 <= k < 1, (ii) 2 < 1 < k < 2(l - 1), (iii) 1 < l < k, l divides n but 1 does not divide k. 2018 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:181 / 196
页数:16
相关论文
共 21 条
[1]  
[Anonymous], 1982, GRAD TEXTS MATH
[3]  
BREWSTER S, 1983, P AM MATH SOC, V88, P181
[4]   Maps between certain complex Grassmann manifolds [J].
Chakraborty, Prateep ;
Sankaran, Parameswaran .
TOPOLOGY AND ITS APPLICATIONS, 2014, 170 :119-123
[5]   MAPS BETWEEN LOCALIZED HOMOGENEOUS SPACES [J].
FRIEDLANDER, EM .
TOPOLOGY, 1977, 16 (03) :205-216
[6]  
Fulton W., 1998, ERGEB MATH GRENZGEB
[7]  
GLOVER H, 1978, LECT NOTES MATH, V657, P170
[8]   SELF-MAPS OF FLAG MANIFOLDS [J].
GLOVER, HH ;
HOMER, WD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (02) :423-434
[9]  
Griffiths P. A., 1981, PROGR MATH, V16
[10]  
Halperin S., 2001, GRAD TEXT M, V205, DOI 10.1007/978-1-4613-0105-9