Laboratory studies on the 3 μm spectral features of Mg-rich phyllosilicates with temperature variations in support of the interpretation of small asteroid surface spectra

被引:5
|
作者
Alemanno, G. [1 ]
Maturilli, A. [1 ]
Helbert, J. [1 ]
D'Amore, M. [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany
关键词
asteroids; surfaces; temperature; spectroscopy; infrared observations; REFLECTANCE SPECTROSCOPY; CARBONACEOUS CHONDRITES; CM; MINERALOGY; ABUNDANCE; MISSION;
D O I
10.1016/j.epsl.2020.116424
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent orbital data revealed the presence of hydrated minerals on the surfaces of asteroids, mainly through the identification and the study of the 3-mu m spectral absorption band (Hamilton et al., 2019; Kitazato et al., 2019). The presence of an absorption feature around 3-mu m on planetary bodies' surfaces is indicative of the presence of OH-bearing minerals. This band has been widely detected on carbonaceous chondrites but its appearance and its shape are diverse indicating different composition and/or the occurrence of subsequent alteration events. In this work, we present the results of laboratory experiments performed at the Planetary Spectroscopy Laboratory (PSL) of the German Aerospace Center (DLR) to study the spectral behaviour of the 3-mu m spectral features in the Mg-OH minerals with thermal variation. It has been suggested that thermal alteration processes, can darken the surfaces of carbonaceous chondrites, thus decreasing the appearance and visibility of the spectral features around 3 mu m. Thermal alteration processes are consistent with the scenario currently proposed to explain the formation of 162173 Ryugu asteroid (Sugita et al., 2019). The Near Infrared Spectrometer (NIRS3) on the Hayabusa2 mission detected a weak and narrow absorption feature centred at 2.72 mu m across the entire observed surface of the C-type asteroid (Kitazato et al., 2019). However, the collected spectra from the Ryugu surface show no other absorption features in the 3-mu m region. To investigate this point further and analyze the variation of the spectral features around 3-mu m with thermal alteration, we studied the Mg-rich phyllosilicates serpentine and saponite in two different situations: 1) thermal alteration at increasing temperature - the samples were heated at steps of 100 degrees C, starting from 100 degrees C up to 700 degrees C, for 4 hours each; 2) long time heating at constant temperature - samples were kept constantly at similar to 250 degrees C for 1 month (1st step), then cooled down and measured in reflectance. This long heating process has been repeated at the same temperature of 250 degrees C for 2 months (2nd step). The results obtained show an important variation of phyllosilicates spectral bands with temperature and provide useful data for the interpretation of past and future mission small bodies collected surface spectra. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
empty
未找到相关数据