Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats

被引:59
作者
Yoon, Kyung Jae [3 ]
Oh, Byung-Mo [2 ]
Kim, Dae-Yul [1 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Rehabil Med, Seoul 138736, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Rehabil Med, Seoul 151, South Korea
[3] Sungkyunkwan Univ, Sch Med, Kangbuk Samsung Hosp, Dept Rehabil Med, Seoul, South Korea
关键词
Cerebral ischemia; Transcranial direct current stimulation; Optimal time window; Plasticity; MICROTUBULE-ASSOCIATED PROTEIN-2; CORTICAL ELECTRICAL-STIMULATION; LONG-TERM POTENTIATION; HUMAN MOTOR CORTEX; STROKE PATIENTS; BRAIN-INJURY; DC-STIMULATION; POLARIZING CURRENTS; HEMIPARETIC STROKE; NEURONAL-ACTIVITY;
D O I
10.1016/j.brainres.2012.02.062
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Transcranial direct current stimulation (tDCS) is an emerging tool for improving recovery from stroke. However, there has been no trial to determine whether it has a therapeutic benefit in the early stage of cerebral ischemia, and there is no consensus on the optimal time window of stimulation. Here, we described the effects of anodal tDCS in early cerebral ischemia, assessing functional improvements and changes in neuronal plasticity, and identifying the optimal time window for delivering tDCS to maximize functional gains. Thirty rats were randomly assigned to three groups: sham (n=10); early tDCS (ET), receiving tDCS 1 day after ischemia for 5 days (n=10), and late tDCS (LT), receiving tDCS 1 week after ischemia for 5 days (n=10). Both ET and LT groups showed improved Barnes maze performance and motor behavioral index scores. However, only the LT group exhibited improvement in beam balance test. Immunohistochemical stainings showed that the ET group reinforced notable MAP-2 expression and the LT group enhanced mainly the level of GAP-43 in both peri-lesional and contralesional cortex. These immunohistochemical results had significant correlation with behavioral and cognitive functions. However, brain MRI and H-1 MRS showed no significant differences among the three groups in ischemic volume and metabolic alteration. These results suggest that anodal tDCS has the potential to modulate neural plasticity around the ischemic penumbra and even in the contralesional area without aggravating infarction volume and metabolic alteration. The degree of functional improvement was slightly greater when tDCS was applied 1 week rather than 1 day after ischemic injury. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 70 条
[1]   Cortical electrical stimulation combined with rehabilitative training: Enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats [J].
Adkins-Muir, DL ;
Jones, TA .
NEUROLOGICAL RESEARCH, 2003, 25 (08) :780-788
[2]   Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats [J].
Allred, Rachel P. ;
Jones, Theresa A. .
EXPERIMENTAL NEUROLOGY, 2008, 210 (01) :172-181
[3]   DIFFERENT VOLTAGE-DEPENDENT THRESHOLDS FOR INDUCING LONG-TERM DEPRESSION AND LONG-TERM POTENTIATION IN SLICES OF RAT VISUAL-CORTEX [J].
ARTOLA, A ;
BROCHER, S ;
SINGER, W .
NATURE, 1990, 347 (6288) :69-72
[4]   Using Transcranial Direct-Current Stimulation to Treat Stroke Patients With Aphasia [J].
Baker, Julie M. ;
Rorden, Chris ;
Fridriksson, Julius .
STROKE, 2010, 41 (06) :1229-1236
[5]   MEMORY DEFICITS ASSOCIATED WITH SENESCENCE - NEUROPHYSIOLOGICAL AND BEHAVIORAL-STUDY IN THE RAT [J].
BARNES, CA .
JOURNAL OF COMPARATIVE AND PHYSIOLOGICAL PSYCHOLOGY, 1979, 93 (01) :74-104
[6]  
Baudewig J, 2001, MAGN RESON MED, V45, P196, DOI 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO
[7]  
2-1
[8]   Efficacy of rehabilitative experience declines with time after focal ischemic brain injury [J].
Biernaskie, J ;
Chernenko, G ;
Corbett, D .
JOURNAL OF NEUROSCIENCE, 2004, 24 (05) :1245-1254
[9]   Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury [J].
Biernaskie, J ;
Corbett, D .
JOURNAL OF NEUROSCIENCE, 2001, 21 (14) :5272-5280
[10]   ACTION OF BRIEF POLARIZING CURRENTS ON CEREBRAL CORTEX OF RAT .1. DURING CURRENT FLOW + .2. IN PRODUCTION OF LONG-LECTING AFTER-EFFECTS [J].
BINDMAN, LJ ;
LIPPOLD, OCJ ;
REDFEARN, JW .
JOURNAL OF PHYSIOLOGY-LONDON, 1964, 172 (03) :369-&