QUASISIMILARITY OF INVARIANT SUBSPACES FOR C0 OPERATORS WITH MULTIPLICITY TWO

被引:2
作者
Clouatre, Raphael [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
加拿大自然科学与工程研究理事会;
关键词
C-0; operators; invariant subspaces; quasisimilarity orbit; LITTLEWOOD-RICHARDSON RULE;
D O I
10.7900/jot.2011sep19.1937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an operator T of class C-0 with multiplicity two, we show that the quasisimilarity class of an invariant subspace M is determined by the quasisimilarity classes of the restriction T vertical bar M and of the compression T-M perpendicular to. We also provide a canonical form for the subspace M.
引用
收藏
页码:495 / 511
页数:17
相关论文
共 11 条
[1]   A continuous version of the Littlewood-Richardson rule and its application to invariant subspaces [J].
Bercovici, H ;
Li, WS ;
Smotzer, T .
ADVANCES IN MATHEMATICS, 1998, 134 (02) :278-293
[2]  
Bercovici H, 2005, J OPERAT THEOR, V54, P69
[3]   Quasisimilarity of invariant subspaces for uniform Jordan operators of infinite multiplicity [J].
Bercovici, H ;
Smotzer, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 140 (01) :87-99
[4]   THE INVARIANT SUBSPACES OF A UNIFORM JORDAN OPERATOR [J].
BERCOVICI, H ;
TANNENBAUM, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) :220-230
[5]   THE QUASISIMILARITY ORBITS OF INVARIANT SUBSPACES [J].
BERCOVICI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (02) :344-363
[6]  
BERCOVICI H., 2007, THETA SER ADV MATH, V7, P115
[7]  
BERCOVICI H., 1988, MATH SURVEYS MONOGR, V26
[8]  
BERCOVICI H., 2001, OPER THEORY ADV APPL, V124, P131
[9]  
Li W.S., 1998, ACTA SCI MATH SZEGED, V64, P609
[10]   Invariant subspaces of nilpotent operators and LR-sequences [J].
Li, WS ;
Müller, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (02) :197-226