Bifurcation of critical points for continuous families of C 2 functionals of Fredholm type

被引:14
作者
Pejsachowicz, Jacobo [1 ]
Waterstraat, Nils [2 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
Bifurcation; Fredholm functional; spectral flow; Hamiltonian systems; periodic solutions; SPECTRAL FLOW; MORSE INDEX; OPERATORS; GEODESICS; THEOREM; SPACE;
D O I
10.1007/s11784-013-0137-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a continuous family of C (2) functionals of Fredholm type, we show that the nonvanishing of the spectral flow for the family of Hessians along a known (trivial) branch of critical points not only entails bifurcation of nontrivial critical points but also allows to estimate the number of bifurcation points along the branch. We use this result for several parameter bifurcation, estimating the number of connected components of the complement of the set of bifurcation points in the parameter space and apply our results to bifurcation of periodic orbits of Hamiltonian systems. By means of a comparison principle for the spectral flow, we obtain lower bounds for the number of bifurcation points of periodic orbits on a given interval in terms of the coefficients of the linearization.
引用
收藏
页码:537 / 560
页数:24
相关论文
共 25 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[2]   THE CONLEY INDEX OVER A SPACE [J].
BARTSCH, T .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (02) :167-177
[3]  
Bartsch T., 1993, LECT NOTES MATH, V1560
[4]  
Booss B., 1985, ANN GLOB ANAL GEOM, V3, P337
[5]   ON THE MASLOV INDEX [J].
CAPPELL, SE ;
LEE, R ;
MILLER, EY .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (02) :121-186
[6]   A BIFURCATION THEOREM FOR CRITICAL-POINTS OF VARIATIONAL-PROBLEMS [J].
CHOW, SN ;
LAUTERBACH, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (01) :51-61
[7]   Uniqueness of spectral flow [J].
Ciriza, E ;
Fitzpatrick, PM ;
Pejsachowicz, J .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (11-13) :1495-1501
[8]  
Conley C. C., 1978, CBMS REG C SER MATH, V38
[9]  
Fitzpatrick P. M., PREPRINT
[10]   Spectral flow and bifurcation of critical points of strongly-indefinite functionals part I. General theory [J].
Fitzpatrick, PM ;
Pejsachowicz, J ;
Recht, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 162 (01) :52-95