Ice-binding surface of fish type III antifreeze

被引:55
作者
Chen, GJ
Jia, ZC [1 ]
机构
[1] Queens Univ, Dept Biochem, Kingston, ON K7L 3N6, Canada
[2] Beijing Normal Univ, Dept Chem, Beijing 100875, Peoples R China
基金
英国医学研究理事会;
关键词
D O I
10.1016/S0006-3495(99)77008-6
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We employed computational techniques, including molecular docking, energy minimization, and molecular dynamics simulation, to investigate the ice-binding surface of fish type III antifreeze protein (AFP). The putative ice-binding site was previously identified by mutagenesis, structural analysis, and flatness evaluation. Using a high-resolution x-ray structure of fish type III AFP as a model, we calculated the ice-binding interaction energy of 11 surface patches chosen to cover the entire surface of the protein. These various surface patches exhibit small but significantly different ice-binding interaction energies. For both the prism ice plane and an "ice" plane in which water O atoms are randomly positioned, our calculations show that a surface patch containing 14 residues (L19, V20, T18, S42, V41, Q9, P12, Ale, M21, T15, Q44, 113, N14, K61) has the most favorable interaction energy and corresponds to the previously identified ice-binding site of type III AFP. Although in general agreement with the earlier studies, our results also suggest that the ice-binding site may be larger than the previously identified "core" cluster that includes mostly hydrophilic residues. The enlargement mainly results from the inclusion of peripheral hydrophobic residues and K61.
引用
收藏
页码:1602 / 1608
页数:7
相关论文
共 29 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[3]   STRUCTURE-FUNCTION RELATIONSHIP IN THE GLOBULAR TYPE-III ANTIFREEZE PROTEIN - IDENTIFICATION OF A CLUSTER OF SURFACE RESIDUES REQUIRED FOR BINDING TO ICE [J].
CHAO, H ;
SONNICHSEN, FD ;
DELUCA, CI ;
SYKES, BD ;
DAVIES, PL .
PROTEIN SCIENCE, 1994, 3 (10) :1760-1769
[4]   Ice-binding mechanism of winter flounder antifreeze proteins [J].
Cheng, AL ;
Merz, KM .
BIOPHYSICAL JOURNAL, 1997, 73 (06) :2851-2873
[5]  
Cheng C.C., 1991, P1
[6]   ENERGY-OPTIMIZED STRUCTURE OF ANTIFREEZE PROTEIN AND ITS BINDING MECHANISM [J].
CHOU, KC .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 223 (02) :509-517
[7]   Antifreeze proteins [J].
Davies, PL ;
Sykes, BD .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (06) :828-834
[8]   BIOCHEMISTRY OF FISH ANTIFREEZE PROTEINS [J].
DAVIES, PL ;
HEW, CL .
FASEB JOURNAL, 1990, 4 (08) :2460-2468
[9]   The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice [J].
DeLuca, CI ;
Davies, PL ;
Ye, QL ;
Jia, ZC .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 275 (03) :515-525
[10]  
DELUCA CL, 1997, THESIS QUEENS U KING