Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries

被引:81
作者
Wang, Qiufen [1 ,2 ]
Huang, Ying [1 ]
Miao, Juan [2 ]
Zhao, Yang [1 ]
Wang, Yan [1 ]
机构
[1] Northwestern Polytech Univ, Key Lab Space Appl Phys & Chem, Minist Educ, Dept Appl Chem,Sch Sci, Xian 710129, Peoples R China
[2] Henan Polytech Univ, Sch Phys & Chem, Jiaozuo 454000, Peoples R China
关键词
Nanocomposites; Ce-SnS2; Hydrothermal route; Electrochemical properties; NEGATIVE-ELECTRODE MATERIALS; CATHODE MATERIAL; PERFORMANCE; TIN; OXIDE; NANOCOMPOSITE; COMPOSITE; STORAGE; NANOFLAKES; BEHAVIOR;
D O I
10.1016/j.electacta.2013.01.072
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The nanocomposites Ce doped SnS2 (Ce-SnS2) have been synthesized by a hydrothermal route. The Ce-SnS2 composites exhibit 3D flowerlike structures. The particle sizes of each petal are in the range from 100 to 200 nm with clear lattice fringes. The electrode cycling performance and rate retention ability of Ce-SnS2 are better than those of SnS2 as anode electrodes materials for lithium ion batteries. The Ce-SnS2 compound (Ce of 5 mol%) shows the best reversible capacities and cycling performance among the synthesized Ce-SnS2 compounds. The reason is that the part of large-radius cerium ions (much larger than that of Sn4+) can be the substitutes for Sn4+ in the SnS2 lattice. The expansion of the crystal lattice can provide more lattice space for lithium intercalation and de-intercalation, and further improves the cycling performance of Ce-SnSz. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:120 / 130
页数:11
相关论文
共 46 条
[11]   Synthesis, characterization and application of SnSx (x=1, 2) nanoparticles [J].
Gou, XL ;
Chen, J ;
Shen, PW .
MATERIALS CHEMISTRY AND PHYSICS, 2005, 93 (2-3) :557-566
[12]   Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery [J].
Gu, C. D. ;
Mai, Y. J. ;
Zhou, J. P. ;
You, Y. H. ;
Tu, J. P. .
JOURNAL OF POWER SOURCES, 2012, 214 :200-207
[13]   SnO2 NANOCRYSTALLITE: NOVEL SYNTHETIC ROUTE FROM DEEP EUTECTIC SOLVENT AND LITHIUM STORAGE PERFORMANCE [J].
Gu, C. D. ;
Mai, Y. J. ;
Zhou, J. P. ;
Tu, J. P. .
FUNCTIONAL MATERIALS LETTERS, 2011, 4 (04) :377-381
[14]   Synthesis of SnS2 nanocrystals via a solvothermal process [J].
Hai, B ;
Tang, KB ;
Wang, CR ;
An, CH ;
Yang, Q ;
Shen, GZ ;
Qian, YT .
JOURNAL OF CRYSTAL GROWTH, 2001, 225 (01) :92-95
[15]   Structural investigations of nanomixed oxides SnO2-xAl2O3 prepared by sol-gel technique [J].
Heiba, Z. K. ;
Ahmed, M. A. ;
Ahmed, Sameh I. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 507 (01) :253-256
[16]   A novel tin-based nanocomposite oxide as negative-electrode materials for Li-ion batteries [J].
Huang, F ;
Yuan, ZY ;
Zhan, H ;
Zhou, YH ;
Sun, JT .
MATERIALS LETTERS, 2003, 57 (22-23) :3341-3345
[17]   Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements [J].
Iqbal, Muhammad Javed ;
Ahmad, Zahoor .
JOURNAL OF POWER SOURCES, 2008, 179 (02) :763-769
[18]   Lithium Storage ion Carbon Nanostructures [J].
Kaskhedikar, Nitin A. ;
Maier, Joachim .
ADVANCED MATERIALS, 2009, 21 (25-26) :2664-2680
[19]   Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries [J].
Kim, Hyun Sik ;
Chung, Young Hoon ;
Kang, Soon Hyung ;
Sung, Yung-Eun .
ELECTROCHIMICA ACTA, 2009, 54 (13) :3606-3610
[20]   Novel SnS2-nanosheet anodes for lithium-ion batteries [J].
Kim, Tae-Joon ;
Kirn, Chunjoong ;
Son, Dongyeon ;
Choi, Myungsuk ;
Park, Byungwoo .
JOURNAL OF POWER SOURCES, 2007, 167 (02) :529-535