On Particle Methods for Parameter Estimation in State-Space Models

被引:282
|
作者
Kantas, Nikolas [1 ]
Doucet, Arnaud [2 ]
Singh, Sumeetpal S. [3 ]
Maciejowski, Jan [3 ]
Chopin, Nicolas [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[3] Univ Cambridge, Dept Engn, Cambridge CB1 2PZ, England
[4] HEC Paris, CREST ENSAE, F-99245 Malakoff, France
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inference; maximum likelihood inference; particle filtering; Sequential Monte Carlo; state-space models; CHAIN MONTE-CARLO; EXPECTATION-MAXIMIZATION ALGORITHM; MARKOV-CHAIN; LIKELIHOOD EVALUATION; BAYESIAN-ESTIMATION; INFERENCE; FILTER; SIMULATION; STABILITY; APPROXIMATION;
D O I
10.1214/14-STS511
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods and illustrate their performance on simple models.
引用
收藏
页码:328 / 351
页数:24
相关论文
共 50 条
  • [41] Parameter Identification for Nonlinear State-Space Models of a Biological Network via Linearization and Robust State Estimation
    Xiong, Jie
    Zhou, Tong
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8235 - 8240
  • [42] COMPARISON OF SIMULATION-BASED ALGORITHMS FOR PARAMETER ESTIMATION AND STATE RECONSTRUCTION IN NONLINEAR STATE-SPACE MODELS
    Chau, Thi Tuyet Trang
    Ailliot, Pierre
    Monbet, Valerie
    Tandeo, Pierre
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (02): : 240 - 264
  • [43] The Bias Compensation Based Parameter and State Estimation for Observability Canonical State-Space Models with Colored Noise
    Wang, Xuehai
    Ding, Feng
    Liu, Qingsheng
    Jiang, Chuntao
    ALGORITHMS, 2018, 11 (11):
  • [44] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    RISK ANALYSIS, 2023, 43 (02) : 339 - 357
  • [45] State Estimation for a Class of Piecewise Affine State-Space Models
    Rui, Rafael
    Ardeshiri, Tohid
    Nurminen, Henri
    Bazanella, Alexandre
    Gustafsson, Fredrik
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 61 - 65
  • [46] On the estimation of state matrix and noise statistics in state-space models
    Enescu, M
    Koivunen, V
    IEEE 56TH VEHICULAR TECHNOLOGY CONFERENCE, VTC FALL 2002, VOLS 1-4, PROCEEDINGS, 2002, : 2192 - 2196
  • [47] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [48] KRYLOV SPACE METHODS ON STATE-SPACE CONTROL-MODELS
    BOLEY, DL
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1994, 13 (06) : 733 - 758
  • [49] ISAR Motion Parameter Estimation Using State-Space Modeling
    Adjrad, Mounir
    Woodbridge, Karl
    2012 IEEE RADAR CONFERENCE (RADAR), 2012,
  • [50] Methods for the estimation of the size of lookahead tree state-space
    Creag Winacott
    Behnam Behinaein
    Karen Rudie
    Discrete Event Dynamic Systems, 2013, 23 : 135 - 155