On Particle Methods for Parameter Estimation in State-Space Models

被引:282
|
作者
Kantas, Nikolas [1 ]
Doucet, Arnaud [2 ]
Singh, Sumeetpal S. [3 ]
Maciejowski, Jan [3 ]
Chopin, Nicolas [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[3] Univ Cambridge, Dept Engn, Cambridge CB1 2PZ, England
[4] HEC Paris, CREST ENSAE, F-99245 Malakoff, France
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inference; maximum likelihood inference; particle filtering; Sequential Monte Carlo; state-space models; CHAIN MONTE-CARLO; EXPECTATION-MAXIMIZATION ALGORITHM; MARKOV-CHAIN; LIKELIHOOD EVALUATION; BAYESIAN-ESTIMATION; INFERENCE; FILTER; SIMULATION; STABILITY; APPROXIMATION;
D O I
10.1214/14-STS511
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods and illustrate their performance on simple models.
引用
收藏
页码:328 / 351
页数:24
相关论文
共 50 条
  • [31] Review of the application of modeling and estimation method in system identification for nonlinear state-space models
    Li, Xiaonan
    Ma, Ping
    Chao, Tao
    Yang, Ming
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2024, 15 (05)
  • [32] State Estimation for a Class of Piecewise Affine State-Space Models
    Rui, Rafael
    Ardeshiri, Tohid
    Nurminen, Henri
    Bazanella, Alexandre
    Gustafsson, Fredrik
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) : 61 - 65
  • [33] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [34] Backward Importance Sampling for Online Estimation of State Space Models
    Martin, Alice
    Etienne, Marie-Pierre
    Gloaguen, Pierre
    Le Corff, Sylvain
    Olsson, Jimmy
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1447 - 1460
  • [35] Bayesian computational methods for state-space models with application to SIR model
    Kim, Jaeoh
    Jo, Seongil
    Lee, Kyoungjae
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1207 - 1223
  • [36] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [37] Spatiotemporal blocking of the bouncy particle sampler for efficient inference in state-space models
    Goldman, Jacob Vorstrup
    Singh, Sumeetpal S.
    STATISTICS AND COMPUTING, 2021, 31 (05)
  • [38] Smoothing algorithms for state-space models
    Briers, Mark
    Doucet, Arnaud
    Maskell, Simon
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (01) : 61 - 89
  • [39] Robust Estimation in Non-Linear State-Space Models With State-Dependent Noise
    Agamennoni, Gabriel
    Nebot, Eduardo M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (08) : 2165 - 2175
  • [40] Estimation for a class of generalized state-space time series models
    Fukasawa, T
    Basawa, IV
    STATISTICS & PROBABILITY LETTERS, 2002, 60 (04) : 459 - 473