On Particle Methods for Parameter Estimation in State-Space Models

被引:282
|
作者
Kantas, Nikolas [1 ]
Doucet, Arnaud [2 ]
Singh, Sumeetpal S. [3 ]
Maciejowski, Jan [3 ]
Chopin, Nicolas [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[3] Univ Cambridge, Dept Engn, Cambridge CB1 2PZ, England
[4] HEC Paris, CREST ENSAE, F-99245 Malakoff, France
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inference; maximum likelihood inference; particle filtering; Sequential Monte Carlo; state-space models; CHAIN MONTE-CARLO; EXPECTATION-MAXIMIZATION ALGORITHM; MARKOV-CHAIN; LIKELIHOOD EVALUATION; BAYESIAN-ESTIMATION; INFERENCE; FILTER; SIMULATION; STABILITY; APPROXIMATION;
D O I
10.1214/14-STS511
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods and illustrate their performance on simple models.
引用
收藏
页码:328 / 351
页数:24
相关论文
共 50 条
  • [31] A framework for state-space estimation with uncertain models
    Sayed, AH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) : 998 - 1013
  • [32] Physical Parameter Estimation from State-Space Models for Systems with Missing Input Information
    Lus, Hilmi
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2012, 138 (12): : 1402 - 1410
  • [33] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [34] STATE-SPACE MODEL-BASED PARAMETER-ESTIMATION METHODS AND SOME APPLICATIONS
    RAO, BD
    ADVANCED ALGORITHMS AND ARCHITECTURES FOR SIGNAL PROCESSING IV, 1989, 1152 : 257 - 264
  • [35] Fast estimation methods for time-series models in state-space form
    Garcia-Hiernaux, Alfredo
    Casals, Jose
    Jerez, Miguel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (02) : 121 - 134
  • [36] Biased Online Parameter Inference for State-Space Models
    Del Moral, Pierre
    Jasra, Ajay
    Zhou, Yan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 727 - 749
  • [37] Parameter redundancy in discrete state-space and integrated models
    Cole, Diana J.
    McCrea, Rachel S.
    BIOMETRICAL JOURNAL, 2016, 58 (05) : 1071 - 1090
  • [38] RECURSIVE PREDICTION ERROR METHODS FOR ONLINE ESTIMATION IN NONLINEAR STATE-SPACE MODELS
    LJUNGQUIST, D
    BALCHEN, JG
    MODELING IDENTIFICATION AND CONTROL, 1994, 15 (02) : 109 - 121
  • [39] Parameter redundancy in discrete state-space and integrated models
    School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF, England, United Kingdom
    Biom J, 5 (1071-1090):
  • [40] Biased Online Parameter Inference for State-Space Models
    Pierre Del Moral
    Ajay Jasra
    Yan Zhou
    Methodology and Computing in Applied Probability, 2017, 19 : 727 - 749