On Particle Methods for Parameter Estimation in State-Space Models

被引:282
|
作者
Kantas, Nikolas [1 ]
Doucet, Arnaud [2 ]
Singh, Sumeetpal S. [3 ]
Maciejowski, Jan [3 ]
Chopin, Nicolas [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[3] Univ Cambridge, Dept Engn, Cambridge CB1 2PZ, England
[4] HEC Paris, CREST ENSAE, F-99245 Malakoff, France
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inference; maximum likelihood inference; particle filtering; Sequential Monte Carlo; state-space models; CHAIN MONTE-CARLO; EXPECTATION-MAXIMIZATION ALGORITHM; MARKOV-CHAIN; LIKELIHOOD EVALUATION; BAYESIAN-ESTIMATION; INFERENCE; FILTER; SIMULATION; STABILITY; APPROXIMATION;
D O I
10.1214/14-STS511
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods and illustrate their performance on simple models.
引用
收藏
页码:328 / 351
页数:24
相关论文
共 50 条
  • [21] DIFFUSION ESTIMATION OF STATE-SPACE MODELS: BAYESIAN FORMULATION
    Dedecius, Kamil
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [22] Particle filtering, learning, and smoothing for mixed-frequency state-space models
    Leippold, Markus
    Yang, Hanlin
    ECONOMETRICS AND STATISTICS, 2019, 12 : 25 - 41
  • [23] PARTICLE FILTERING FOR MULTIVARIATE STATE-SPACE MODELS
    Djuric, Petar M.
    Bugallo, Monica F.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 373 - 376
  • [24] Auxiliary-Particle-Filter-based Two-Filter Smoothing for Wiener State-Space Models
    Hostettler, Roland
    Schon, Thomas B.
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1904 - 1911
  • [25] Noise Moment and Parameter Estimation of State-Space Model
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    IFAC PAPERSONLINE, 2018, 51 (15): : 891 - 896
  • [26] Fast estimation methods for time-series models in state-space form
    Garcia-Hiernaux, Alfredo
    Casals, Jose
    Jerez, Miguel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (02) : 121 - 134
  • [27] VARIATIONAL PARAMETER LEARNING IN SEQUENTIAL STATE-SPACE MODEL VIA PARTICLE FILTERING
    Li, Chenhao
    Godsill, Simon J.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5589 - 5593
  • [28] Particle MCMC algorithms and architectures for accelerating inference in state-space models
    Mingas, Grigorios
    Bottolo, Leonardo
    Bouganis, Christos-Savvas
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 83 : 413 - 433
  • [29] PARTICLE GIBBS SAMPLING FOR REGIME-SWITCHING STATE-SPACE MODELS
    El-Laham, Yousef
    Yang, Liu
    Lynch, Heather J.
    Djuric, Petar M.
    Bugallo, Monica F.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5579 - 5583
  • [30] The Gibbs sampler with particle efficient importance sampling for state-space models*
    Grothe, Oliver
    Kleppe, Tore Selland
    Liesenfeld, Roman
    ECONOMETRIC REVIEWS, 2019, 38 (10) : 1152 - 1175