Lead Sulfide Nanocrystal Quantum Dot Solar Cells with Trenched ZnO Fabricated via Nanoimprinting

被引:20
作者
Kim, Sarah [1 ]
Kim, Jun Kwan [1 ]
Gao, Jianbo [2 ]
Song, Jung Hoon [1 ,4 ]
An, Hey Jin [1 ,5 ]
You, Tae-Soo [5 ]
Lee, Tae-Soo [3 ]
Jeong, Jong-Ryul [3 ]
Lee, Eung-Sug [1 ]
Jeong, Jun-Ho [1 ]
Beard, Matthew C. [2 ]
Jeong, Sohee [1 ]
机构
[1] Korea Inst Machinery & Mat, Nanomech Syst Res Div, Taejon 305343, South Korea
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Chungnam Natl Univ, Grad Sch Green Energy Technol, Dept Mat Sci & Engn, Taejon 305764, South Korea
[4] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea
[5] Chungbuk Natl Univ, Dept Chem, Chungbuk 361763, South Korea
基金
新加坡国家研究基金会;
关键词
quantum dot solar cells; lead sulfide quantum dots; nanoimprinting; patterned ZnO; depleted heterojunction; nanostructured interface; PHOTOVOLTAICS; 2-NITROBENZALDEHYDE; ENHANCEMENT; FILMS; OXIDE;
D O I
10.1021/am400443w
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The improvement of power conversion efficiency, especially current density (J(sc)), for nanocrystal quantum dot based heterojunction solar cells was realized by employing a trenched ZnO film fabricated using nanoimprint techniques. For an optimization of ZnO patterns, various patterned ZnO films were investigated using electrical and optical analysis methods by varying the line width, interpattern distance, pattern height, and residual layer. Analyzing the features of patterned ZnO films allowed us to simultaneously optimize both the pronounced electrical effects as well as optical properties. Consequently, we achieved an enhancement in J(sc) from 7.82 to 12.5 mA cm(-2) by adopting the patterned ZnO with optimized trenched shape.
引用
收藏
页码:3803 / 3808
页数:6
相关论文
共 26 条
[1]   Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles [J].
Arango, AC ;
Carter, SA ;
Brock, PJ .
APPLIED PHYSICS LETTERS, 1999, 74 (12) :1698-1700
[2]   Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids [J].
Baik, Seung Jae ;
Kim, Kyungnam ;
Lim, Koeng Su ;
Jung, SoMyung ;
Park, Yun-Chang ;
Han, Dong Geon ;
Lim, Sooyeon ;
Yoo, Seunghyup ;
Jeong, Sohee .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (03) :607-612
[3]   Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics [J].
Barkhouse, D. Aaron R. ;
Debnath, Ratan ;
Kramer, Illan J. ;
Zhitomirsky, David ;
Pattantyus-Abraham, Andras G. ;
Levina, Larissa ;
Etgar, Lioz ;
Graetzel, Michael ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2011, 23 (28) :3134-+
[4]   Improved Current Extraction from ZnO/PbS Quantum Dot Heterojunction Photovoltaics Using a MoO3 Interfacial Layer [J].
Brown, Patrick R. ;
Lunt, Richard R. ;
Zhao, Ni ;
Osedach, Timothy P. ;
Wanger, Darcy D. ;
Chang, Liang-Yi ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2011, 11 (07) :2955-2961
[5]   Photochemical reaction of 2-nitrobenzaldehyde by monitoring the diffusion coefficient [J].
Choi, J ;
Terazima, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (35) :9552-9557
[6]   Two-photon photolysis of 2-nitrobenzaldehyde monitored by fluorescent-labeled nanocapsules [J].
Diaspro, A ;
Federici, F ;
Viappiani, C ;
Krol, S ;
Pisciotta, M ;
Chirico, G ;
Cannone, F ;
Gliozzi, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (40) :11008-11012
[7]   n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells [J].
Gao, Jianbo ;
Perkins, Craig L. ;
Luther, Joseph M. ;
Hanna, Mark C. ;
Chen, Hsiang-Yu ;
Semonin, Octavi E. ;
Nozik, Arthur J. ;
Ellingson, Randy J. ;
Beard, Matthew C. .
NANO LETTERS, 2011, 11 (08) :3263-3266
[8]   The patterning of sub-500 nm inorganic oxide structures [J].
Hampton, Meredith J. ;
Williams, Stuart S. ;
Zhou, Zhilian ;
Nunes, Janine ;
Ko, Doo-Hyun ;
Templeton, Joseph L. ;
Samulski, Edward T. ;
DeSimone, Joseph M. .
ADVANCED MATERIALS, 2008, 20 (14) :2667-+
[9]   Aerosol synthesis of anatase titanium dioxide nanoparticles for hybrid solar cells [J].
Huisman, CL ;
Goossens, A ;
Schoonman, J .
CHEMISTRY OF MATERIALS, 2003, 15 (24) :4617-4624
[10]  
Ip AH, 2012, NAT NANOTECHNOL, V7, P577, DOI [10.1038/NNANO.2012.127, 10.1038/nnano.2012.127]