Performance analysis of Convolutional Neural Network (CNN) based Cancerous Skin Lesion Detection System

被引:12
作者
Jayalakshmi, G. S. [1 ]
Kumar, V. Sathiesh [1 ]
机构
[1] Anna Univ, Madras Inst Technol, Dept Elect Engn, Chennai, Tamil Nadu, India
来源
2019 SECOND INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS 2019) | 2019年
关键词
Dermoscopic Image Analysis; Deep Learning; Convolutional Neural Networks; Batch Normalization; Skin Lesion; Skin Cancer; CLASSIFICATION; DERMOSCOPY; CHECKLIST; DIAGNOSIS; COLOR;
D O I
10.1109/iccids.2019.8862143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the classification of dermoscopic images to identify the type of Skin lesion whether it is benign or malignant. Dermoscopic images provide deep insight for the analysis of any type of skin lesion. Initially, a custom Convolutional Neural Network (CNN) model is developed to classify the images for lesion identification. This model is trained across different train-test split and 30% split of train data is found to produce better accuracy. To further improve the classification accuracy a Batch Normalized Convolutional Neural Network (BN-CNN) is proposed. The proposed solution consists of 6 layers of convolutional blocks with batch normalization followed by a fully connected layer that performs binary classification. The custom CNN model is similar to the proposed model with the absence of Batch normalization and presence of Dropout at Fully connected layer. Experimental results for the proposed model provided better accuracy of 89.30%. Final work includes analysis of the proposed model to identify the best tuning parameters.
引用
收藏
页数:6
相关论文
共 17 条
[1]   Seven-point checklist of dermoscopy revisited [J].
Argenziano, G. ;
Catricala, C. ;
Ardigo, M. ;
Buccini, P. ;
De Simone, P. ;
Eibenschutz, L. ;
Ferrari, A. ;
Mariani, G. ;
Silipo, V. ;
Sperduti, I. ;
Zalaudek, I. .
BRITISH JOURNAL OF DERMATOLOGY, 2011, 164 (04) :785-790
[2]   Improving Dermoscopy Image Classification Using Color Constancy [J].
Barata, Catarina ;
Celebi, M. Emre ;
Marques, Jorge S. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) :1146-1152
[3]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[4]   Automatic Lesion Detection System (ALDS) for Skin Cancer Classification Using SVM and Neural Classifiers [J].
Farooq, Muhammad Ali ;
Azhar, Muhammad Aatif Mobeen ;
Raza, Rana Hammad .
2016 IEEE 16TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2016, :301-308
[5]   The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy [J].
Henning, J. Scott ;
Dusza, Stephen W. ;
Wang, Steven Q. ;
Marghoob, Ashfaq A. ;
Rabinovitz, Harold S. ;
Polsky, David ;
Kopf, Alfred W. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2007, 56 (01) :45-52
[6]  
Ioffe S, 2015, 32 INT C MACH LEARN
[7]  
Kwasigroch Arkadiusz, 2017, 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), P1069, DOI 10.1109/MMAR.2017.8046978
[8]  
LeCun Y, 2010, IEEE INT SYMP CIRC S, P253, DOI 10.1109/ISCAS.2010.5537907
[9]   A method for the diagnosis of primary cutaneous melanoma using surface microscopy [J].
Menzies, SW .
DERMATOLOGIC CLINICS, 2001, 19 (02) :299-+
[10]   THE ABCD RULE OF DERMATOSCOPY - HIGH PROSPECTIVE VALUE IN THE DIAGNOSIS OF DOUBTFUL MELANOCYTIC SKIN-LESIONS [J].
NACHBAR, F ;
STOLZ, W ;
MERKLE, T ;
COGNETTA, AB ;
VOGT, T ;
LANDTHALER, M ;
BILEK, P ;
BRAUNFALCO, O ;
PLEWIG, G .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 1994, 30 (04) :551-559