Stabilization and controllability of first-order integro-differential hyperbolic equations

被引:34
作者
Coron, Jean-Michel [1 ]
Hu, Long [1 ,2 ]
Olive, Guillaume [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, UMR 7598, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris 05, France
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Integro-differential equation; Stabilization; Controllability; Fredholm backstepping; transformation; DIMENSIONAL INPUT OPERATORS; SYSTEMS; STABILIZABILITY; PDES;
D O I
10.1016/j.jfa.2016.08.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article we study the stabilization of first order linear integro-differential hyperbolic equations. For such equations we prove that the stabilization in finite time is equivalent to the exact controllability property. The proof relies on a Fredholm transformation that maps the original system into a finite-time stable target system. The controllability assumption is used to prove the invertibility of such a transformation. Finally, using the method of moments, we show in a particular rase that the controllability is reduced to the criterion of Fattorini. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3554 / 3587
页数:34
相关论文
共 22 条
[1]   ON THE FATTORINI CRITERION FOR APPROXIMATE CONTROLLABILITY AND STABILIZABILITY OF PARABOLIC SYSTEMS [J].
Badra, Mehdi ;
Takahashi, Takeo .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (03) :924-956
[2]   Backstepping in infinite dimension for a class of parabolic distributed parameter systems [J].
Boskovic, DM ;
Balogh, A ;
Krstic, M .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2003, 16 (01) :44-75
[3]   Backstepping-Forwarding Control and Observation for Hyperbolic PDEs With Fredholm Integrals [J].
Bribiesca-Argomedo, Federico ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (08) :2145-2160
[4]  
Coron J.-M., 2007, MATH SURVEYS MONOGR, V136
[5]   Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation [J].
Coron, Jean-Michel ;
Lu, Qi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3683-3729
[6]   Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right [J].
Coron, Jean-Michel ;
Lu, Qi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (06) :1080-1120
[7]  
Fattorini HO., 1966, SIAM J. Control, V4, P686, DOI [10.1137/0304048, DOI 10.1137/0304048]
[8]   Riesz bases and exact controllability of C0-groups with one-dimensional input operators [J].
Guo, BZ ;
Xu, GQ .
SYSTEMS & CONTROL LETTERS, 2004, 52 (3-4) :221-232
[9]  
HAUTUS MLJ, 1969, P K NED AKAD A MATH, V72, P443
[10]  
HOCHSTADT H, 1973, PURE APPL MATH