A monotone approximation for the nonautonomous size-structured population model

被引:13
作者
Ackleh, AS [1 ]
Deng, K [1 ]
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
关键词
nonlocal nonautonomous problem of hyperbolic type; comparison principle; monotone approximation method; linear convergence;
D O I
10.1090/qam/1686189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a monotone approximation method, based on an upper and lower solutions technique, for solving the nonautonomous size-structured model. Such a technique results in the existence and uniqueness of solutions for this equation. Furthermore, we establish a first-order convergence of the method and present a numerical example.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 10 条
[1]  
BANKS HT, 1991, INT S NUM M, V100, P35
[2]   TRANSFORMATION SEMIGROUPS AND L1-APPROXIMATION FOR SIZE STRUCTURED POPULATION-MODELS [J].
BANKS, HT ;
KAPPEL, F .
SEMIGROUP FORUM, 1989, 38 (02) :141-155
[3]  
COURANT R, 1962, METHODS MATH PHYSICS, V2
[4]  
de Roos A. M., 1988, Numer. Methods Partial Diff. Eq., V4, P173, DOI [DOI 10.1002/NUM.1690040303, 10.1002/num.1690040303]
[5]   EFFECTS OF GROWTH-RATES IN MODELS OF SIZE DISTRIBUTION FORMATION IN PLANTS AND ANIMALS [J].
DEANGELIS, DL ;
HUSTON, MA .
ECOLOGICAL MODELLING, 1987, 36 (1-2) :119-137
[6]   IMPLICATIONS OF A PARTIAL-DIFFERENTIAL-EQUATION COHORT MODEL [J].
DEANGELIS, DL ;
MATTICE, JS .
MATHEMATICAL BIOSCIENCES, 1979, 47 (3-4) :271-285
[7]   A FULLY DISCRETIZED APPROXIMATION SCHEME FOR SIZE-STRUCTURED POPULATION-MODELS [J].
ITO, K ;
KAPPEL, F ;
PEICHL, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :923-954
[8]  
Ladde GS., 1985, MONOTONE ITERATIVE T
[9]   A NEW MODEL FOR AGE-SIZE STRUCTURE OF A POPULATION [J].
SINKO, JW ;
STREIFER, W .
ECOLOGY, 1967, 48 (06) :910-+
[10]   ANALYSIS OF A DISTRIBUTED-PARAMETER POPULATION MODEL BASED ON PHYSIOLOGICAL AGE [J].
VANSICKLE, J .
JOURNAL OF THEORETICAL BIOLOGY, 1977, 64 (03) :571-586