Single online visual object tracking with enhanced tracking and detection learning

被引:5
作者
Yi, Yang [1 ,2 ,3 ]
Luo, Liping [1 ]
Zheng, Zhenxian [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Xinhua Coll, Sch Informat Sci, Guangzhou, Guangdong, Peoples R China
[3] Guangdong Prov Key Lab Big Data Anal & Proc, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Single online visual object tracking; Pyramid optical flow; Correlation filter; Detection learning;
D O I
10.1007/s11042-018-6787-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single online visual object tracking has been an active research topic for its wide application on various tasks. In this paper, a new framework and related approaches are proposed to solve this problem consisting of enhanced tracking and detection learning. In the enhanced tracking part, an appearance model based on correlation filter with deep CNN features and a dynamic model using improved pyramid optical flow method are employed. Two models cooperate together to depict object appearance and capture target trajectory, which also contribute to provide training samples for detection learning. In the detection learning part, a cascade classifier and P-N learning scheme are employed to reinitialize tracking when model drift occurs. Data experiments on several challenging benchmarks show that the presented method is comparable to the state-of-the-art.
引用
收藏
页码:12333 / 12351
页数:19
相关论文
共 50 条
[41]   ROBUST ONLINE VISUAL TRACKING VIA A TEMPORAL ENSEMBLE FRAMEWORK [J].
Guan, Hao ;
Xue, Xiangyang .
2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
[42]   Online Visual Tracking via Correlation Filter with Convolutional Networks [J].
Li, Zheng ;
Yang, Jianfei ;
Zha, Juan ;
Wang, Chang-Dong ;
Zheng, Weishi .
2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
[43]   SIST: Online Scale-Adaptive Object tracking with Stepwise Insight [J].
Ruan, Weijian ;
Liang, Chao ;
Yu, Yi ;
Chen, Jun ;
Hu, Ruimin .
NEUROCOMPUTING, 2020, 384 :200-212
[44]   Smooth Incremental Learning of Correlation Filters for Visual Tracking [J].
Guo, Jie ;
Zhuang, Long ;
Zheng, Ping .
IEEE SIGNAL PROCESSING LETTERS, 2020, 27 :336-340
[45]   Learning Attentional Regularized Correlation Filter for Visual Tracking [J].
Qiu Z.-L. ;
Zha Y.-F. ;
Wu M. ;
Wang Q. .
Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (09) :1762-1768
[46]   Scale-Adaptive Visual Tracking with Occlusion Detection [J].
Xu, Yulong ;
Wang, Jiabao ;
Li, Yang ;
Miao, Zhuang ;
He, Ming ;
Zhang, Yafei .
PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, :938-942
[47]   Detection based visual tracking with convolutional neural network [J].
Wang, Yong ;
Luo, Xinbin ;
Ding, Lu ;
Fu, Shan ;
Wei, Xian .
KNOWLEDGE-BASED SYSTEMS, 2019, 175 :62-71
[48]   Fast Visual Object Tracking via Correlation Filter and Binary Descriptors [J].
Xu, Tianyang ;
Wu, Xiao-Jun ;
Feng, Fei .
2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017,
[49]   Two-Step Affine Transformation Prediction for Visual Object Tracking [J].
Zheng, Weiwei ;
Yu, Huimin ;
Lu, Zhaohui .
IEEE ACCESS, 2021, 9 :36512-36521
[50]   Visual object tracking via kernelized correlation filter and grey prediction [J].
Lv, Mingming ;
Xu, Qian ;
Geng, Xinxin ;
Fang, Jiwen .
ENGINEERING RESEARCH EXPRESS, 2025, 7 (01)