An Epigenetic Signature of Developmental Potential in Neural Stem Cells and Early Neurons

被引:37
作者
Burney, Matthew J. [1 ]
Johnston, Caroline [1 ]
Wong, Kee-Yew [2 ]
Teng, Siaw-Wei [2 ]
Beglopoulos, Vassilios [1 ]
Stanton, Lawrence W. [2 ,3 ]
Williams, Brenda P. [1 ]
Bithell, Angela [1 ]
Buckley, Noel J. [1 ]
机构
[1] Kings Coll London, James Black Ctr, Inst Psychiat, Ctr Cellular Basis Behav,Dept Neurosci, London SE5 9NU, England
[2] Genome Inst Singapore, Stem Cell & Dev Biol Grp, Singapore, Singapore
[3] Natl Univ Singapore, Dept Biol Sci, Singapore 117548, Singapore
基金
英国惠康基金;
关键词
Neural stem cells; Neuronal differentiation; Epigenetics; Histone methylation; Multipotency; Fate restriction; GENE-EXPRESSION; DIFFERENTIATION; PRECURSORS; PROTEIN; BIOINFORMATICS; SPECIFICATION; PLURIPOTENT; REPRESSION; SEQUENCES; HOMOLOG;
D O I
10.1002/stem.1431
中图分类号
Q813 [细胞工程];
学科分类号
摘要
A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons. Stem Cells2013;31:1868-1880
引用
收藏
页码:1868 / 1880
页数:13
相关论文
共 52 条
  • [1] Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation
    Alcaraz, Wendy A.
    Gold, David A.
    Raponi, Eric
    Gent, Peter M.
    Concepcion, Dorothy
    Hamilton, Bruce A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (51) : 19424 - 19429
  • [2] Differential expression analysis for sequence count data
    Anders, Simon
    Huber, Wolfgang
    [J]. GENOME BIOLOGY, 2010, 11 (10):
  • [3] Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo
    Arlotta, P
    Molyneaux, BJ
    Chen, J
    Inoue, J
    Kominami, R
    Macklis, JD
    [J]. NEURON, 2005, 45 (02) : 207 - 221
  • [4] Chromatin signatures of pluripotent cell lines
    Azuara, V
    Perry, P
    Sauer, S
    Spivakov, M
    Jorgensen, HF
    John, RM
    Gouti, M
    Casanova, M
    Warnes, G
    Merkenschlager, M
    Fisher, AG
    [J]. NATURE CELL BIOLOGY, 2006, 8 (05) : 532 - U189
  • [5] High-resolution profiling of histone methylations in the human genome
    Barski, Artern
    Cuddapah, Suresh
    Cui, Kairong
    Roh, Tae-Young
    Schones, Dustin E.
    Wang, Zhibin
    Wei, Gang
    Chepelev, Iouri
    Zhao, Keji
    [J]. CELL, 2007, 129 (04) : 823 - 837
  • [6] Gene expression in cortical interneuron precursors is prescient of their mature function
    Batista-Brito, Renata
    Machold, Robert
    Klein, Corinna
    Fishell, Gord
    [J]. CEREBRAL CORTEX, 2008, 18 (10) : 2306 - 2317
  • [7] A bivalent chromatin structure marks key developmental genes in embryonic stem cells
    Bernstein, BE
    Mikkelsen, TS
    Xie, XH
    Kamal, M
    Huebert, DJ
    Cuff, J
    Fry, B
    Meissner, A
    Wernig, M
    Plath, K
    Jaenisch, R
    Wagschal, A
    Feil, R
    Schreiber, SL
    Lander, ES
    [J]. CELL, 2006, 125 (02) : 315 - 326
  • [8] Perceptions of epigenetics
    Bird, Adrian
    [J]. NATURE, 2007, 447 (7143) : 396 - 398
  • [9] Niche-independent symmetrical self-renewal of a mammalian tissue stem cell
    Conti, L
    Pollard, SM
    Gorba, T
    Reitano, E
    Toselli, M
    Biella, G
    Sun, YR
    Sanzone, S
    Ying, QL
    Cattaneo, E
    Smith, A
    [J]. PLOS BIOLOGY, 2005, 3 (09): : 1594 - 1606
  • [10] Generation of bivalent chromatin domains during cell fate decisions
    De Gobbi, Marco
    Garrick, David
    Lynch, Magnus
    Vernimmen, Douglas
    Hughes, Jim R.
    Goardon, Nicolas
    Luc, Sidinh
    Lower, Karen M.
    Sloane-Stanley, Jacqueline A.
    Pina, Cristina
    Soneji, Shamit
    Renella, Raffaele
    Enver, Tariq
    Taylor, Stephen
    Jacobsen, Sten Eirik W.
    Vyas, Paresh
    Gibbons, Richard J.
    Higgs, Douglas R.
    [J]. EPIGENETICS & CHROMATIN, 2011, 4