Pyro-electrolytic water splitting for hydrogen generation

被引:59
作者
Zhang, Yan [1 ,2 ]
Kumar, Santosh [3 ]
Marken, Frank [4 ]
Krasny, Marcin [1 ]
Roake, Eleanor [1 ]
Eslava, Salvador [3 ]
Dunn, Steve [5 ]
Da Como, Enrico [6 ]
Bowen, Chris R. [1 ]
机构
[1] Univ Bath, Dept Mech Engn, Bath BA2 7AY, Avon, England
[2] Cent S Univ, State Key Lab Powder Met, Changsha, Hunan, Peoples R China
[3] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England
[4] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[5] London South Bank Univ, Sch Engn, Chem Engn, 103 Borough Rd, London SE1 0AA, England
[6] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Water splitting; Pyroelectric; External power source; H-2; generation; THERMAL-ENERGY; NANOGENERATOR; DEVICE;
D O I
10.1016/j.nanoen.2019.01.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Water splitting by thermal cycling of a pyroelectric element that acts as an external charge source offers an alternative method to produce hydrogen from transient low-grade waste heat or natural temperature changes. In contrast to conventional energy harvesting, where the optimised load resistance is used to maximise the combination of current and voltage, for water splitting applications there is a need to optimise the system to achieve a sufficiently high potential difference for water electrolysis, whilst also maintaining a high current output. For the thermal harvesting system examined here, a high impedance 0.5 M KOH electrolyte with working electrodes connected to a rectified pyroelectric harvester produced the highest voltage of 2.34 V, which was sufficient for H-2 generation. In addition to electrolyte concentration, the frequency of the temperature oscillations was examined and reducing the heating-cooling frequency led to a larger change in temperature to generate increased pyroelectric charge and a higher potential difference for pyro-water splitting. Finally, in the absence of sacrificial reagents, cyclic production of H-2 (0.654 mu mol/h) was demonstrated for the optimised processing parameters of electrolyte and thermal cycling frequency using the external pyroelectric element as a charge source for water splitting.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 37 条
[1]  
Bard A. J., 1988, ELECTROANALYTICAL CH
[2]  
Belitz R., 2017, Energy Harvesting and Systems (Materials, Mechanisms, Circuits and Storage), V4, P107, DOI 10.1515/ehs-2016-0009
[3]   Pyroelectrically Driven •OH Generation by Barium Titanate and Palladium Nanoparticles [J].
Benke, Annegret ;
Mehner, Erik ;
Rosenkranz, Marco ;
Dmitrieva, Evgenia ;
Leisegang, Tilmann ;
Stoecker, Hartmut ;
Pompe, Wolfgang ;
Meyer, Dirk C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (32) :18278-18286
[4]   Pyroelectric materials and devices for energy harvesting applications [J].
Bowen, C. R. ;
Taylor, J. ;
LeBoulbar, E. ;
Zabek, D. ;
Chauhan, A. ;
Vaish, R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3836-3856
[5]   Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters [J].
Briscoe, Joe ;
Dunn, Steve .
NANO ENERGY, 2015, 14 :15-29
[6]   Pyroelectric effect enhancement in laminate composites under short circuit condition [J].
Chang, H. H. S. ;
Whatmore, R. W. ;
Huang, Z. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (11)
[7]   Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting [J].
Cottrill, Anton L. ;
Liu, Albert Tianxiang ;
Kunai, Yuichiro ;
Koman, Volodymyr B. ;
Kaplan, Amir ;
Mahajan, Sayalee G. ;
Liu, Pingwei ;
Toland, Aubrey R. ;
Strano, Michael S. .
NATURE COMMUNICATIONS, 2018, 9
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   Pyroelectrocatalytic Disinfection Using the Pyroelectric Effect of Nano- and Microcrystalline LiNbO3 and LiTaO3 Particles [J].
Gutmann, Emanuel ;
Benke, Annegret ;
Gerth, Katharina ;
Boettcher, Horst ;
Mehner, Erik ;
Klein, Christin ;
Krause-Buchholz, Udo ;
Bergmann, Ute ;
Pompe, Wolfgang ;
Meyer, Dirk C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (09) :5383-5393
[10]   Ferroelectrics: A pathway to switchable surface chemistry and catalysis [J].
Kakekhani, Arvin ;
Ismail-Beigi, Sohrab ;
Altman, Eric I. .
SURFACE SCIENCE, 2016, 650 :302-316