Classification of (k, μ)-contact manifolds with divergence free Cotton tensor and vanishing Bach tensor

被引:6
作者
Ghosh, Amalendu [1 ]
Sharma, Ramesh [2 ]
机构
[1] Chandernagore Coll, Dept Math, Chandanagar 712136, WB, India
[2] Univ New Haven, Dept Math & Phys, West Haven, CT 06516 USA
关键词
Bach flat; Cotton tensor; (k; mu)-contact manifold; Weyl tensor;
D O I
10.4064/ap180228-13-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove that a (k, mu)-contact manifold of dimension 2n + 1 with divergence free Cotton tensor is flat in dimension 3, and in higher dimensions, locally isometric to S-n (4) x En+1. Finally, we show that a Bach flat non-Sasakian (k, mu)-contact manifold is flat in dimension 3, and in each higher dimension, there is a unique (k, mu)-contact manifold locally isometric, up to a D-homothetic deformation, to the unit tangent sphere bundle of a space of constant curvature not equal 1. This result provides an example of a Bach flat metric that is neither Einstein nor conformally flat.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 13 条