Microfluidic synthesis of thermo-responsive block copolymer nano-objects via RAFT polymerization

被引:4
作者
Glier, Tomke E. [1 ]
Vakili, Mohammad [2 ,3 ]
Trebbin, Martin [2 ,4 ]
机构
[1] Univ Hamburg, Inst Nanostrukt Forsch INF, Ctr Free Electron Laser Sci CFEL, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Hamburg, Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
[4] SUNY Buffalo, Dept Chem, 760 Nat Sci Complex, Buffalo, NY 14260 USA
关键词
Amphiphilic self-assembly; Block copolymers; Microfluidics; RAFT polymerization; Thermo-responsive polymers; Continuous flow reactor; Flow chemistry; FREE-RADICAL POLYMERIZATION; FLOW; VESICLES; NANOPARTICLES; TECHNOLOGY; PARTICLES; DIFFUSION; MICELLES; DEVICES;
D O I
10.1007/s10965-020-02290-3
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Continuous flow microreactors offer advantages such as quick heat dissipation, high throughput as well as reproducible and flexible product quality. Here we present a X-ray compatible microfluidic reaction vessel suitable for studying living polymerization reactions in flow under oxygen-free conditions. Diblock copolymer nano-objects were synthesized via mixing-induced reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization in a microfluidic channel. A water-soluble macro chain transfer agent was chain-extended withN-isopropylacrylamide (NIPAm). Poly(NIPAm) is a thermo-responsive polymer with a lower critical solution temperature of 32 degrees C. Thus, heating the polymer solution results in the formation of micelles according to the polymerization-induced thermal self-assembly route. To implement the reaction in a microfluidic sample environment, metal-polyimide devices have been fabricated. The use of microfluidics for the synthesis of copolymers enhanced the control of reaction parameters. Moreover, the use of X-ray compatible materials paves the way for futurein situtime-resolved structural studies of the flowing species.
引用
收藏
页数:7
相关论文
共 63 条
[1]   Vesicles and liposomes:: A self-assembly principle beyond lipids [J].
Antonietti, M ;
Förster, S .
ADVANCED MATERIALS, 2003, 15 (16) :1323-1333
[2]   Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications [J].
Blanazs, Adam ;
Armes, Steven P. ;
Ryan, Anthony J. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (4-5) :267-277
[3]   Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step [J].
Charleux, Bernadette ;
Delaittre, Guillaume ;
Rieger, Jutta ;
D'Agosto, Franck .
MACROMOLECULES, 2012, 45 (17) :6753-6765
[4]   Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J].
Chiefari, J ;
Chong, YK ;
Ercole, F ;
Krstina, J ;
Jeffery, J ;
Le, TPT ;
Mayadunne, RTA ;
Meijs, GF ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1998, 31 (16) :5559-5562
[5]   Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization [J].
Derry, Matthew J. ;
Fielding, Lee A. ;
Armes, Steven P. .
PROGRESS IN POLYMER SCIENCE, 2016, 52 :1-18
[6]   Polymer vesicles [J].
Discher, DE ;
Eisenberg, A .
SCIENCE, 2002, 297 (5583) :967-973
[7]   Polymerization-induced thermal self-assembly (PITSA) [J].
Figg, C. Adrian ;
Simula, Alexandre ;
Gebre, Kalkidan A. ;
Tucker, Bryan S. ;
Haddleton, David M. ;
Sumerlin, Brent S. .
CHEMICAL SCIENCE, 2015, 6 (02) :1230-1236
[8]  
Forster S, 1998, ADV MATER, V10, P195, DOI 10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO
[9]  
2-V
[10]  
Günther A, 2006, LAB CHIP, V6, P1487, DOI 10.1039/b609851g