CYCLICITY OF A CLASS OF POLYNOMIAL NILPOTENT CENTER SINGULARITIES

被引:6
作者
Garcia, Isaac A. [1 ]
Shafer, Douglas S. [2 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
关键词
Cyclicity; limit cycle; nilpotent center; DIFFERENTIAL-EQUATIONS; SYSTEMS; INTEGRABILITY; BIFURCATION;
D O I
10.3934/dcds.2016.36.2497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we extend techniques based on computational algebra for bounding the cyclicity of nondegenerate centers to nilpotent centers in a natural class of polynomial systems, those of the form (x) over dot = y + P-2m vertical bar 1(x, y), (y) over dot = Q(2m+1)(x, y), where P2m+1 and Q(2m+1) are homogeneous polynomials of degree 2m+1 in x and y. We use the method to obtain an upper bound (which is sharp in this case) on the cyclicity of all centers in the cubic family and all centers in a broad subclass in the quintic family.
引用
收藏
页码:2497 / 2520
页数:24
相关论文
共 16 条
[1]   The center problem for a family of systems of differential equations having a nilpotent singular point [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :32-43
[2]   Local bifurcation of limit cycles and integrability of a class of nilpotent systems of differential equations [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) :314-323
[3]  
Amel'kin V.V., 1982, NONLINEAR OSCILLATIO
[4]  
Andreev A., 1953, AKAD NAUK SSSR PRIKL, V17, P333
[5]  
Andreev A., 1958, Trans. Amer. Math. Soc, V8, P187
[6]   The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part [J].
Andreev, AF ;
Sadovskii, AP ;
Tsikalyuk, VA .
DIFFERENTIAL EQUATIONS, 2003, 39 (02) :155-164
[7]  
[Anonymous], 1966, MATH SCI ENG
[8]   Local analytic integrability for nilpotent centers [J].
Chavarriga, J ;
Giacomin, H ;
Giné, J ;
Llibre, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :417-428
[9]  
Christopher C, 2005, TRENDS MATH, P23
[10]   DIRECT METHODS FOR PRIMARY DECOMPOSITION [J].
EISENBUD, D ;
HUNEKE, C ;
VASCONCELOS, W .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :207-235