Analytical gradient for the domain-based local pair natural orbital second order Moller-Plesset perturbation theory method (DLPNO-MP2)

被引:40
|
作者
Pinski, Peter [1 ]
Neese, Frank [1 ]
机构
[1] Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 150卷 / 16期
关键词
ANALYTICAL ENERGY GRADIENTS; ELECTRON CORRELATION METHODS; DENSITY-FUNCTIONAL THEORY; SCALING COUPLED-CLUSTER; HARTREE-FOCK; BASIS-SETS; AB-INITIO; CONFIGURATION-INTERACTION; PSEUDONATURAL ORBITALS; TRIPLES CORRECTION;
D O I
10.1063/1.5086544
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Building upon our previously published work [P. Pinski and F. Neese, J. Chem. Phys. 148, 031101 (2018)], we derive the formally complete analytical gradient for the domain-based local pair natural orbital second order Moller-Plesset (MP2) perturbation theory method. Extensive testing of geometry optimizations shows that the deviations from resolution of the identity-based MP2 structures are small. Covalent bond lengths are reproduced to within 0.1 pm, whereas errors in interatomic distances between noncovalently interacting system parts do not exceed 1% with default truncation thresholds and 0.3% with tight thresholds. Moreover, we introduce a procedure to circumvent instabilities of the gradient caused by singular coupled-perturbed localization equations, as they occur for some symmetric systems with continuously degenerate localized orbitals. The largest system for which a geometry optimization was completed is a host-guest complex with over 200 atoms and more than 4000 basis functions (triple-zeta basis). The most demanding single-point gradient calculation was performed for the small protein crambin containing 644 atoms and over 12 000 basis functions. Published under license by AIP Publishing.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2)
    Pinski, Peter
    Neese, Frank
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (03):
  • [2] Local explicitly correlated second-order Moller-Plesset perturbation theory with pair natural orbitals
    Tew, David P.
    Helmich, Benjamin
    Haettig, Christof
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (07):
  • [3] Second order Moller-Plesset perturbation theory based upon the fragment molecular orbital method
    Fedorov, DG
    Kitaura, K
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (06): : 2483 - 2490
  • [4] Analytical energy gradients for local second-order Moller-Plesset perturbation theory
    El Azhary, A
    Rauhut, G
    Pulay, P
    Werner, HJ
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13): : 5185 - 5193
  • [5] Analytic energy gradient for second-order Moller-Plesset perturbation theory based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Ishimura, Kazuya
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04):
  • [6] Analytic gradient for second order Moller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Li, Hui
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):
  • [7] Local explicitly correlated second- and third-order Moller-Plesset perturbation theory with pair natural orbitals
    Haettig, Christof
    Tew, David P.
    Helmich, Benjamin
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):
  • [8] Eliminating the domain error in local explicitly correlated second-order Moller-Plesset perturbation theory
    Werner, Hans-Joachim
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (10):
  • [9] MP2[V] - A Simple Approximation to Second-Order Moller-Plesset Perturbation Theory
    Deng, Jia
    Gilbert, Andrew T. B.
    Gill, Peter M. W.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (04) : 1639 - 1644
  • [10] Second Order Local Moller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code
    Usvyat, Denis
    Maschio, Lorenzo
    Pisani, Cesare
    Schuetz, Martin
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (3-4): : 441 - 454