Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration

被引:86
作者
Guo, Honglin [1 ]
Zhao, Shuaifei [1 ,2 ]
Wu, Xiaoxian [1 ]
Qi, Hong [1 ]
机构
[1] Nanjing Tech Univ, Membrane Sci & Technol Res Ctr, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Macquarie Univ, Fac Sci & Engn, N Ryde, NSW 2109, Australia
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Ceramic membrane; Nanofiltration; Sol-gel; Membrane characterization; Inorganic membrane; TIO2; MEMBRANES; ALUMINA; TITANIA; PERVAPORATION; RETENTION; STABILITY; FLUX; ZRO2;
D O I
10.1016/j.micromeso.2016.03.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
TiO2/ZrO2 ceramic nanofiltration membranes are successfully fabricated through the polymeric sol gel route followed by the dip-coating technique. Disk type alpha-alumina supported mesoporous gamma-alumina (pore size: 5-6 nm) is employed as the support in dip-coating. The unsupported and supported composite ceramic membranes are systematically characterized and evaluated in terms of phase composition, chemical stability, gas adsorption, molecular weight cut-off (MWCO), membrane pore size, water flux and salt rejection. It is found that the TiO2/ZrO2 ceramic membranes have amorphous phase at 400 and 500 degrees C, suggesting the high thermal stability. The fabricated membranes have the MWCO of 620-860 Da, corresponding to the membrane pore size of 1.2-1.5 nm. Relatively low water permeability can be attributed to the low microporosity of the membrane. Donnan exclusion is the dominant transport mechanism of the NF membrane in the single-component system, and salt rejection is closely related to the hydration properties of the ions (e.g., the hydration radius). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 22 条
[1]  
Aust U., 2006, J MEMBR SCI, V281
[2]   Development and characterization of ceramic nanofiltration membranes [J].
Benfer, S ;
Popp, U ;
Richter, H ;
Siewert, C ;
Tomandl, G .
SEPARATION AND PURIFICATION TECHNOLOGY, 2001, 22-3 (1-3) :231-237
[3]   Hafnia ceramic nanofiltration membranes. Part I: Preparation and characterization [J].
Blanc, P ;
Larbot, A ;
Palmeri, J ;
Lopez, M ;
Cot, L .
JOURNAL OF MEMBRANE SCIENCE, 1998, 149 (02) :151-161
[4]   A COMPARATIVE-STUDY ON THERMAL AND HYDROTHERMAL STABILITY OF ALUMINA, TITANIA AND ZIRCONIA MEMBRANES [J].
CHANG, CH ;
GOPALAN, R ;
LIN, YS .
JOURNAL OF MEMBRANE SCIENCE, 1994, 91 (1-2) :27-45
[5]   Preparation of high-flux γ-alumina nanofiltration membranes by using a modified sol-gel method [J].
Chen, Xianfu ;
Zhang, Wei ;
Lin, Yuqing ;
Cai, Yuanyuan ;
Qiu, Minghui ;
Fan, Yiqun .
MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 214 :195-203
[6]   Use of ultra- and nanofiltration ceramic membranes for desalination [J].
Condom, S. ;
Larbot, A. ;
Younssi, Saad Alami ;
Persin, M. .
DESALINATION, 2004, 168 :207-213
[7]   Amino acid retention with alumina γ nanofiltration membrane [J].
Grib, H ;
Persin, M ;
Gavach, C ;
Piron, DL ;
Sandeaux, J ;
Mameri, N .
JOURNAL OF MEMBRANE SCIENCE, 2000, 172 (1-2) :9-17
[8]   Direct water reclamation from sewage using ceramic tight ultra- and nanofiltration [J].
Kramer, Franca C. ;
Shang, Ran ;
Heijman, Sebastiaan G. J. ;
Scherrenberg, Sigrid M. ;
van Lier, Jules B. ;
Rietveld, Luuk C. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 147 :329-336
[9]   Micro-structural optimization of supported γ-alumina membranes [J].
Kuzniatsova, T. ;
Mottern, M. L. ;
Shqau, K. ;
Yu, D. ;
Verweij, H. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 316 (1-2) :80-88
[10]   Nanofiltration membranes review: Recent advances and future prospects [J].
Mohammad, A. W. ;
Teow, Y. H. ;
Ang, W. L. ;
Chung, Y. T. ;
Oatley-Radcliffe, D. L. ;
Hilal, N. .
DESALINATION, 2015, 356 :226-254