Thermal Characteristics and Kinetic Analysis of Woody Biomass Pyrolysis in the Presence of Bifunctional Alkali Metal Ceramics

被引:41
作者
Vuppaladadiyam, Arun K. [1 ]
Memon, Muhammad Zaki [1 ]
Ji, Guozhao [1 ]
Raheem, Abdul [1 ]
Jia, Ting Zhao [1 ]
Dupont, Valerie [2 ]
Zhao, Ming [1 ,3 ]
机构
[1] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[2] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[3] Minist Educ, Key Lab Solid Waste Management & Environm Safety, Beijing 100084, Peoples R China
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2019年 / 7卷 / 01期
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Woody biomass; Alkali metal ceramics; In situ CO2 capture; Kinetic analysis; iso-Conversional methods; LIGNOCELLULOSIC BIOMASS; THERMOGRAVIMETRIC ANALYSIS; THERMODYNAMIC PARAMETERS; SEWAGE-SLUDGE; MASTER PLOTS; MODEL-FREE; CELLULOSE; DEGRADATION; DECOMPOSITION; WASTE;
D O I
10.1021/acssuschemeng.8b02967
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Effects of alkali ceramics, Na2ZrO3 (NZ) and Li4SiO4 (LS), were quantified in the catalytic pyrolysis of sawdust, using thermogravimetric analysis and kinetic modeling. Results indicated that the alkali ceramics were able to initiate thermal decomposition at lower temperatures and enhanced H-2 yield. The mean activation energies estimated by Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO) and Friedman methods were within the range of 162-166, 114-116, 112-117 kJ mol(-1) for sawdust (SD), sawdust mixed with Li4SiO4 (SD-LS) and sawdust mixed with Na2ZrO3 (SD-NZ), respectively. The theoretical and experimental master plots constructed for SD closely match with theoretical master plot corresponding to three-dimensional diffusion (Ginstling-Brounshtein equation) (D4) reaction model. The SD-LS and SD-NZ samples followed first-order (F1) reaction model at lower conversions and shifted from F1 to three-dimensional diffusion (D4) reaction model at higher conversions.
引用
收藏
页码:238 / 248
页数:21
相关论文
共 41 条
[1]  
Akahira T., 1971, RES REPORT CHIBA I T, V16, P22, DOI DOI 10.1021/I200014A015
[2]   Kinetic analysis of Botryococcus braunii pyrolysis using model-free and model fitting methods [J].
Ali, Imtiaz ;
Naqvi, Salman Raza ;
Bahadar, Ali .
FUEL, 2018, 214 :369-380
[3]   Impact of Potassium and Phosphorus in Biomass on the Properties of Fast Pyrolysis Bio-oil [J].
Banks, Scott W. ;
Nowakowski, Daniel J. ;
Bridgwater, Anthony V. .
ENERGY & FUELS, 2016, 30 (10) :8009-8018
[4]   Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass [J].
Braga, Renata M. ;
Melo, Dulce M. A. ;
Aquino, Flavia M. ;
Freitas, Julio C. O. ;
Melo, Marcus A. F. ;
Barros, Joana M. F. ;
Fontes, Maria S. B. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 115 (02) :1915-1920
[5]   The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis [J].
Burhenne, Luisa ;
Messmer, Jonas ;
Aicher, Thomas ;
Laborie, Marie-Pierre .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 101 :177-184
[6]   Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk [J].
Cai, Junmeng ;
Xu, Di ;
Dong, Zhujun ;
Yu, Xi ;
Yang, Yang ;
Banks, Scott W. ;
Bridgwater, Anthony V. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2705-2715
[7]   Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis [J].
Chen, Zhihua ;
Hu, Mian ;
Zhu, Xiaolei ;
Guo, Dabin ;
Liu, Shiming ;
Hu, Zhiquan ;
Xiao, Bo ;
Wang, Jingbo ;
Laghari, Mahmood .
BIORESOURCE TECHNOLOGY, 2015, 192 :441-450
[8]   Kinetic parameters of red pepper waste as biomass to solid biofuel [J].
Domingos Maia, Amanda Alves ;
de Morais, Leandro Cardoso .
BIORESOURCE TECHNOLOGY, 2016, 204 :157-163
[9]   GENERAL TREATMENT OF THERMOGRAVIMETRY OF POLYMERS [J].
FLYNN, JH ;
WALL, LA .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY, 1966, A 70 (06) :487-+
[10]  
FRIEDMAN HL, 1964, J POLYM SCI POL SYM, P183