IDENTIFICATION OF THE MEMORY KERNEL IN THE STRONGLY DAMPED WAVE EQUATION BY A FLUX CONDITION

被引:15
作者
Colombo, Fabrizio [1 ]
Guidetti, Davide [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
关键词
Strongly damped wave equation with memory; identification problem; global in time existence and uniqueness result; PHASE-FIELD MODEL; DEPENDENT RELAXATION KERNELS; INVERSE PROBLEM; ATTRACTORS; TIME;
D O I
10.3934/cpaa.2009.8.601
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an abstract inverse problem of reconstruction of the solution of a semilinear mixed integrodifferential parabolic problem, together with a convolution kernel. The supplementary information required to solve the problem also involves a convolution term with the same unknown kernel. The abstract results are applicable to the identification of a memory kernel in a strongly damped wave equation using a flux condition.
引用
收藏
页码:601 / 620
页数:20
相关论文
共 38 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
[Anonymous], 1992, SIAM STUD APPL MATH
[3]  
[Anonymous], 1987, PITMAN MONOGRAPHS SU
[4]  
[Anonymous], 1995, Analytic semigroups and optimal regularity in parabolic problems
[5]  
Bakushinsky A. B., 2004, MATH APPL, V577
[6]  
BERTERO M., 1998, Introduction to Inverse Problems in Imaging, DOI [10.1201/9781003032755, DOI 10.1201/9781003032755]
[7]  
Borini S, 1999, ASYMPTOTIC ANAL, V20, P263
[8]  
Colombo F, 2005, PROG NONLINEAR DIFFE, V64, P189
[9]   Identification of two memory kernels and the time dependence of the heat source for a parabolic conserved phase-field model [J].
Colombo, F ;
Guidetti, D ;
Vespri, V .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (17) :2085-2115
[10]  
Colombo F, 2003, DYNAM SYST APPL, V12, P533