Berezin transform for solvable groups

被引:1
作者
Arazy, J
Upmeier, H
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[2] Univ Marburg, Fachbereich Math, D-35032 Marburg, Germany
关键词
Berezin transform; solvable groups; homogeneous Siegel domains; symmetric cones; Euclidean Jordan algebras; reproducing kernels; correspondence principle; summability kernels; hypergeometric functions;
D O I
10.1023/B:ACAP.0000024192.68563.8d
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Berezin transform in the context of solvable groups AN (acting on homogeneous cones and Siegel domains) and determine its spectral decomposition, using an explicit integral kernel representation for the associated 'eigen-operators' in terms of multivariable hypergeometric functions.
引用
收藏
页码:5 / 28
页数:24
相关论文
共 6 条
[1]   Boundary measures for symmetric domains and integral formulas for the discrete Wallach points [J].
Arazy, J ;
Upmeier, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 47 (04) :375-434
[2]  
BEREZIN FA, 1975, MATH USSR IZV, V9, P341
[3]  
Faraut J., 1994, Analysis on symmetric cones
[4]  
Gindikin S.G., 1964, Russ. Math. Surweys, V19, P1, DOI [10.1070/RM1964v019n04ABEH001153, DOI 10.1070/RM1964V019N04ABEH001153]
[5]  
Magnus W., 1966, FORMULAS THEOREMS SP
[6]   THE BEREZIN TRANSFORM AND INVARIANT DIFFERENTIAL-OPERATORS [J].
UNTERBERGER, A ;
UPMEIER, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (03) :563-597