Linear Latent Force Models Using Gaussian Processes

被引:82
作者
Alvarez, Mauricio A. [1 ]
Luengo, David [2 ]
Lawrence, Neil D. [3 ,4 ]
机构
[1] Univ Tecnol Pereira, Dept Elect Engn, Pereira 660003, Risaralda, Colombia
[2] Univ Politecn Madrid, Dept Circuits & Syst Engn, EUITT, Madrid 28031, Spain
[3] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
[4] Sheffield Inst Translat Neurosci, Sheffield S10 2HQ, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Gaussian processes; dynamical systems; multitask learning; motion capture data; spatiotemporal covariances; differential equations; DROSOPHILA SEGMENTATION; DIFFERENTIAL-EQUATIONS; PARAMETER-ESTIMATION; IDENTIFICATION;
D O I
10.1109/TPAMI.2013.86
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Purely data-driven approaches for machine learning present difficulties when data are scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data-driven modeling with a physical model of the system. We show how different, physically inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology, and geostatistics.
引用
收藏
页码:2693 / 2705
页数:13
相关论文
共 70 条
  • [1] Alvarez M, 2009, ADV NEURAL INFORM PR, P57
  • [2] Alvarez M., 2010, P 13 INT C ARTIFICIA, P25
  • [3] Alvarez M. A., 2011, ADV NEURAL INFORM PR, V24, P55
  • [4] Alvarez Mauricio, 2009, Artificial Intelligence and Statistics, P9
  • [5] [Anonymous], 2012, P 29 INT C MACH LEAR
  • [6] [Anonymous], 2002, Applied Functional Analysis
  • [7] [Anonymous], 2006, Pattern recognition and machine learning
  • [8] [Anonymous], 2007, PROC 56 SESSN INT ST
  • [9] Barry R. P., 1996, Journal of Agricultural, Biological, and Environmental Statistics, V1, P297, DOI 10.2307/1400521
  • [10] Becker S., 2003, P NEUR INF PROC SYST, V15