Implicit Iteration Scheme with Perturbed Mapping for Equilibrium Problems and Fixed Point Problems of Finitely Many Nonexpansive Mappings

被引:39
作者
Ceng, L. C. [2 ,3 ]
Schaible, S. [4 ]
Yao, J. C. [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[2] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[3] Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
[4] Univ Calif Riverside, AG Anderson Grad Sch Management, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Implicit iteration scheme with a perturbed mapping; Equilibrium problem; Common fixed point; Finitely many nonexpansive mappings;
D O I
10.1007/s10957-008-9361-y
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce an implicit iteration scheme with a perturbed mapping for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of finitely many nonexpansive mappings in a Hilbert space. Then, we establish some convergence theorems for this implicit iteration scheme which are connected with results by Xu and Ori (Numer. Funct. Analysis Optim. 22:767-772, 2001), Zeng and Yao (Nonlinear Analysis, Theory, Methods Appl. 64:2507-2515, 2006) and Takahashi and Takahashi (J. Math. Analysis Appl. 331:506-515, 2007). In particular, necessary and sufficient conditions for strong convergence of this implicit iteration scheme are obtained.
引用
收藏
页码:403 / 418
页数:16
相关论文
共 15 条
[1]  
Blum E., 1994, MATH STUDENT, V63, P127
[2]   A hybrid iterative scheme for mixed equilibrium problems and fixed point problems [J].
Ceng, Lu-Chuan ;
Yao, Jen-Chih .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (01) :186-201
[3]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[4]  
Flam SD, 1997, MATH PROGRAM, V78, P29
[5]  
Goebel K., 1990, Topics on Metric Fixed Points Theory
[6]   Viscosity approximation methods for fixed-points problems [J].
Moudafi, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 241 (01) :46-55
[8]  
Osilike MO, 2002, PanAm Math J, V12, P77
[9]  
TADA A, 2007, NONLINEAR ANAL CONVE
[10]   Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces [J].
Takahashi, Satoru ;
Takahashi, Wataru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) :506-515