On the hyper exponent of convergence of zeros of f(j) - φ of higher order linear differential equations

被引:6
作者
Xu, Hong-Yan [1 ]
Tu, Jin [2 ]
Zheng, Xiu-Min [2 ]
机构
[1] Jingdezhen Ceram Inst, Dept Informat & Engn, Jingdezhen 333403, Jiangxi, Peoples R China
[2] Jiangxi Normal Univ, Inst Math & Informat, Nanchang 330022, Jiangxi, Peoples R China
关键词
linear differential equation; hyper order; type; small function; MEROMORPHIC SOLUTIONS; OSCILLATION-THEORY; GROWTH;
D O I
10.1186/1687-1847-2012-114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the relationship between the small function and the derivative of solutions of higher order linear differential equations f((k)) + A(k-1)f((k-1)) + ... + A(0)f = 0 ( k >= 2), where A(j)(z) (j = 0,1, ... , k - 1) are entire functions or meromorphic functions. The theorems of this paper improve the previous results given by Chen, Belaidi, Liu.
引用
收藏
页数:16
相关论文
共 21 条
[1]  
Amemiya I., 1981, Hokkaido Math. J., V10, P1
[2]   ON THE OSCILLATION-THEORY OF F'' + AF=0 WHERE A IS ENTIRE [J].
BANK, SB ;
LAINE, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 273 (01) :351-363
[3]   ON THE ZEROS OF MEROMORPHIC SOLUTIONS OF 2ND-ORDER LINEAR-DIFFERENTIAL EQUATIONS [J].
BANK, SB ;
LAINE, I .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (04) :656-677
[4]   DIFFERENTIAL POLYNOMIALS GENERATED BY SOME COMPLEX LINEAR DIFFERENTIAL EQUATIONS WITH MEROMORPHIC COEFFICIENTS [J].
Belaidi, Benharrat ;
El Farissi, Abdallah .
GLASNIK MATEMATICKI, 2008, 43 (02) :363-373
[5]  
Belaïdi B, 2008, MAT VESTN, V60, P233
[6]  
Chen Z. X., 2001, SCI CHINA SER A, V31, P775
[7]  
Chen Z.X., 2000, Complex Var. Theory Appl., V42, P119
[8]  
[陈宗煊 CHEN Zongxuan], 2006, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V27, P431
[9]   On the Hyper-Order of solutions of some second-order linear differential equations [J].
Chen, ZX .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (01) :79-88
[10]  
Frei M., 1962, COMMENT MATH HELV, V36, P1, DOI DOI 10.1007/BF02566887