Conductive nylon fabric through in situ synthesis of nano-silver: Preparation and characterization

被引:74
作者
Montazer, M. [1 ]
Nia, Z. Komeily [1 ]
机构
[1] Amirkabir Univ Technol, Dept Text, FFSEE, Tehran, Iran
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2015年 / 56卷
关键词
In situ synthesis; Silver nanoparticles; Nylon fabric; Conductivity; Antibacterial properties; ELECTRICAL-CONDUCTIVITY; GREEN SYNTHESIS; NANOPARTICLES; ANTIBACTERIAL; COTTON; POLYANILINE; NANOCOMPOSITES; FIBERS; YARNS;
D O I
10.1016/j.msec.2015.06.044
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
A simple, green and low cost method based on Tollens' reagent is presented to synthesize a nano-conductive silver layer on nylon 6 fabric. The nylon fabric was first treated with potassium permanganate to oxidize fabric surface and thereby, increasing the number of assembled particles on the fabric surface. SEM images indicated distribution of silver nanoparticles on the fabric surface and formation of nanolayer on the fiber surface. EDX and XRD patterns confirmed assembling silver nanoparticles on the nylon fibers. The treated fabrics displayed a very low electrical resistivity i.e. 4.5 Omega/sq. Furthermore, the fabric color was indicated by a reflectance spectrophotometer in order to study the effects of the synthesized nanoparticles on the fabric color. It is also indicated that oxidation process has no significant influence on the mechanical properties of the fabric, and nano-treatment revenged the negative effect of oxidation of nylon fabric. Moreover, silver nanoparticles imparted reasonable antibacterial properties to the fabric against Staphylococcus aureus. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 53 条
[1]  
Amara D, 2012, J MATER CHEM, V22, P9268, DOI [10.1039/c2jm00021, 10.1039/c2jm00021k]
[2]   The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method [J].
Barbosa, Michelle C. ;
Messmer, Nigel R. ;
Brazil, Tayra R. ;
Marciano, Fernanda R. ;
Lobo, Anderson O. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (05) :2620-2625
[3]   Characterization of textile electrodes and conductors using standardized measurement setups [J].
Beckmann, L. ;
Neuhaus, C. ;
Medrano, G. ;
Jungbecker, N. ;
Walter, M. ;
Gries, T. ;
Leonhardt, S. .
PHYSIOLOGICAL MEASUREMENT, 2010, 31 (02) :233-247
[4]   A flexible textile structure based on polymeric photovoltaics using transparent cathode [J].
Bedeloglu, Ayse ;
Demir, Ali ;
Bozkurt, Yalcin ;
Sariciftci, Niyazi Serdar .
SYNTHETIC METALS, 2009, 159 (19-20) :2043-2048
[5]   Flexible planar/fiber-architectured supercapacitors for wearable energy storage [J].
Cai, Xin ;
Peng, Ming ;
Yu, Xiao ;
Fu, Yongping ;
Zou, Dechun .
JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (07) :1184-1200
[6]   Dressware: wearable hardware [J].
De Rossi, D ;
Della Santa, A ;
Mazzoldi, A .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 1999, 7 (01) :31-35
[7]   Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers [J].
Dubas, Stephan T. ;
Kumlangdudsana, Panittamat ;
Potiyaraj, Pranut .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 289 (1-3) :105-109
[8]  
Gacen J, 2000, J SOC DYERS COLOUR, V116, P13
[9]  
Gregory RV., 1991, J. Coated Fabrics, V20, P167, DOI DOI 10.1177/152808379102000304
[10]   Quantitative methods for correlating dispersion and electrical conductivity in conductor-polymer nanostrand composites [J].
Hansen, Nathan ;
Adams, Daniel O. ;
Fullwood, David T. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (11) :1939-1946