On multi-component Ermakov systems in a two-layer fluid: a variational approach

被引:3
作者
An, Hongli [1 ]
Fan, Engui [2 ,3 ]
Zhu, Haixing [4 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[4] Nanjing Forestry Univ, Coll Econ & Management, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED ERMAKOV; INVARIANTS; OSCILLATORS; PROPAGATION; EQUATIONS; BEAMS;
D O I
10.1088/1751-8113/45/39/395206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By introducing Madelung-type transformations, a two-layer fluid model with a circular paraboloidal bottom topography is reduced to coupled nonlinear Schrodinger equations incorporating harmonic traps and de Broglie-Bohm quantum potentials. A kind of multi-component Ermakov system is obtained via a variational approach and a multi-parameter Gaussian ansatz. In particular, three typical reductions to generalized Ermakov systems are discussed. Notable integrals of motion and additional Hamiltonian structures are employed to derive analytical solutions in terms of elliptic integrals for the multi-component Ermakov systems.
引用
收藏
页数:13
相关论文
共 50 条
[1]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[2]  
[Anonymous], 1945, Hydrodynamics
[3]   Projective lifts and generalised Ermakov and Bernoulli systems [J].
Athorne, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) :552-563
[4]   STABILITY AND PERIODICITY IN COUPLED PINNEY EQUATIONS [J].
ATHORNE, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 100 (01) :82-94
[5]   On solving a class of unbalanced Ermakov-Pinney systems [J].
Athorne, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :L563-L566
[6]   Pattern formation on the interface of a two-layer fluid: bi-viscous lower layer [J].
Becker, JM ;
Bercovici, D .
WAVE MOTION, 2001, 34 (04) :431-452
[7]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[8]  
Bowman F., 1953, Elliptic Functions
[9]   Lie systems: theory, generalisations, and applications [J].
Carinena, J. F. ;
de Lucas, J. .
DISSERTATIONES MATHEMATICAE, 2011, (479) :6-+
[10]   Recent Applications of the Theory of Lie Systems in Ermakov Systems [J].
Carinena, Jose F. ;
De Lucas, Javier ;
Ranada, Manuel F. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4